Skip to main navigation menu Skip to main content Skip to site footer

Original article

Vol. 155 No. 4 (2025)

Cohort profile: pulmonary early assessment of the lung in paediatric cancer patients (SWISS-PEARL Study)

Cite this as:
Swiss Med Wkly. 2025;155:4203
Published
03.04.2025

Summary

BACKGROUND: Due to the limited sensitivity of conventional lung function tests in detecting small airway abnormalities, cancer treatment-related pulmonary toxicity may be underdiagnosed. It has been suggested that the nitrogen multiple-breath washout test (N2MBW) might be more sensitive in detecting small airway abnormalities in childhood cancer survivors.

OBJECTIVE: The Pulmonary Early Assessment of the Lung in Paediatric Cancer Patients (SWISS-PEARL) study aims to assess the prevalence and development of early pulmonary toxicity at baseline and longitudinally in paediatric cancer patients using spirometry, body plethysmography, diffusing capacity for carbon monoxide (DLCO), N2MBW and magnetic resonance imaging (MRI) and to identify treatment-related pulmotoxic risk factors.

METHODS: This prospective, multicentre, cohort study at the University Children’s Hospitals of Basel, Bern, Lausanne and Zurich, is enrolling patients aged ≥4 and <22 years at study entry exposed to at least one of the following cancer treatments: chest radiation, chemotherapy or targeted agents, haematopoietic stem cell transplantation and/or thoracic surgery. Participants perform comprehensive lung function testing at baseline (i.e. within 28 days of the start of systemic cancer treatment) and during four follow-up visits until two years after the end of intensive treatment. Respiratory symptoms are also assessed at each time point, and MRI is planned at one and two years post-treatment.

RESULTS: Since May 2022, we have recruited 44 patients and performed 134 lung function tests at baseline. Mean age at diagnosis was 12 years (range 4–18). The most common cancer diagnoses were leukaemia (41%) and lymphoma (23%). Pulmonary assessment was feasible and of good quality in 43/44 (98%) patients for at least one test at baseline; only 4 patients dropped out after baseline measurements.

CONCLUSION: This study will assess the potential development of early pulmonary dysfunction during and post-treatment. Findings from the SWISS-Pearl study may help inform future guidelines for pulmonary surveillance in paediatric cancer patients.

References

  1. Childhood Cancer Registry. Observed 5-year survival for children and adolescents by main diagnostic groups and Langerhans cell histiocytosis, 2009-2018. 2021. p. Survival.
  2. Mertens AC, Yasui Y, Liu Y, Stovall M, Hutchinson R, Ginsberg J, et al.; Childhood Cancer Survivor Study. Pulmonary complications in survivors of childhood and adolescent cancer. A report from the Childhood Cancer Survivor Study. Cancer. 2002 Dec;95(11):2431–41. doi: https://doi.org/10.1002/cncr.10978
  3. Mulder RL, Thönissen NM, van der Pal HJ, Bresser P, Hanselaar W, Koning CC, et al. Pulmonary function impairment measured by pulmonary function tests in long-term survivors of childhood cancer. Thorax. 2011 Dec;66(12):1065–71. doi: https://doi.org/10.1136/thoraxjnl-2011-200618
  4. Dietz AC, Chen Y, Yasui Y, Ness KK, Hagood JS, Chow EJ, et al. Risk and impact of pulmonary complications in survivors of childhood cancer: A report from the Childhood Cancer Survivor Study. Cancer. 2016 Dec;122(23):3687–96. doi: https://doi.org/10.1002/cncr.30200
  5. Versluys AB, Bresters D. Pulmonary complications of childhood cancer treatment. Paediatr Respir Rev. 2016 Jan;17:63–70.
  6. Dobke J, Heilmann J. AIEOP-BFM ALL 2017, International collaborative treatment protocol for children and adolescents with acute lymphoblastic leukemia. 2017; Available from: https://kinderkrebsinfo.de/doi/e203020
  7. B-NHL 2013: Treatment Protocol of the NHL-BFM and the NOPHO Study Groups for Mature Aggressive B-cell Lymphoma and Leukemia in Children and Adolescents. Version 2.2. 2019. Available from: https://kinderkrebsinfo.de/doi/e212044
  8. COSS-Register Studienprotokoll Klinisches Register für Kinder, Jugendliche und Erwachsene mit Osteosarkomen und anderen Knochensarkomen [COSS Registry Study Protocol. Registry for Children, Adolescents and Adults with Osteosarcoma and Biologically Related Bone Sarcomas]. Version 3. 2020. Available from: https://kinderkrebsinfo.de/doi/e231340
  9. EuroNet-PHL-LP1: First International Inter-Group Study for Nodular Lymphocyte-Predominant Hodgkin’s Lymphoma in Children and Adolescents. Final Version 2015-08-26. 2015. Available from: https://www.clinicaltrialsregister.eu/ctr-search/search?query=2007-004092-19
  10. Low Risk Neuroblastoma European Study. Version 8.0. 2021. Available from : https://www.clinicaltrialsregister.eu/ctr-search/search?query=2010-021396-81
  11. HR-NBL2: High-risk Neuroblastoma Study 2. 0 of SIOP-Europe Neuroblastoma/SIOPEN. Version 3.0. 2023. Available from: https://euclinicaltrials.eu/search-for-clinical-trials/?lang=en&EUCT=2024-514917-36-00
  12. Recommendations for Diagnostics, Therapy and Follow-Up Care of Children and Adolescents with Acute Myeloid Leukemia (AML). Protocol Version 1.0. 2019. Available from: https://www.clinicaltrialsregister.eu/ctr-search/search?query=2013-000018-39
  13. rEECur International Randomised Controlled Trial of Chemotherapy for the Treatment of Recurrent and Primary Refractory Ewing Sarcoma. Version 6.0. 2020. Available from: https://euclinicaltrials.eu/search-for-clinical-trials/?lang=en&EUCT=2024-516078-31-00
  14. SIOP-HRMB. An International Prospective Trial on High-Risk Medulloblastoma in Patients Older Than 3 Years. Protocol Version 3.0. 2023. Available from: https://euclinicaltrials.eu/search-for-clinical-trials/?lang=en&EUCT=2024-510578-25-00
  15. SIOP PNET 5 Medulloblastoma: An International Prospective Trial on Medulloblastoma (MB) in Children Older Than 3 to 5 Years with WNT Biological Profile (PNET 5 MB– LR and PNET 5 MB– WNT-HR), Average-Risk Biological Profile (PNET 5 MB– SR), or TP53 Mutation, and Registry for MB Occurring in the Context of Genetic Predisposition. Protocol Final Version 13.0. 2020. Available from: https://www.clinicaltrialsregister.eu/ctr-search/search?query=2011-004868-30
  16. Whelan JS, Bielack SS, Marina N, Smeland S, Jovic G, Hook JM, et al.; EURAMOS collaborators. EURAMOS-1, an international randomised study for osteosarcoma: results from pre-randomisation treatment. Ann Oncol. 2015 Feb;26(2):407–14. doi: https://doi.org/10.1093/annonc/mdu526
  17. Children’s Oncology Group. Long-Term Follow-Up Guidelines for Survivors of Childhood, Adolescent, and Young Adult Cancers. 2023; Version 6.0. Available from: http://www.survivorshipguidelines.org
  18. Otth M, Kasteler R, Mulder RL, Agrusa J, Armenian SH, Barnea D, et al. Recommendations for surveillance of pulmonary dysfunction among childhood, adolescent, and young adult cancer survivors: a report from the International Late Effects of Childhood Cancer Guideline Harmonization Group. EClinicalMedicine. 2024 Feb;69:102487. doi: https://doi.org/10.1016/j.eclinm.2024.102487
  19. St. Jude Research. The Childhood Cancer Survivor Study (CCSS). Available from: https://www.stjude.org/research/departments/epidemiology-cancer-control/the-childhood-cancer-survivor-study.html
  20. St. Jude Children’s Research Hospital. St. Jude LIFE. Available from: https://sjlife.stjude.org/about.html
  21. SCCSS, Swiss Childhood Cancer Survivor Study. Available from: https://www.swiss-ccss.ch/en/current-research-projects/
  22. Walther S, Rettinger E, Maurer HM, Pommerening H, Jarisch A, Sörensen J, et al. Long-term pulmonary function testing in pediatric bronchiolitis obliterans syndrome after hematopoietic stem cell transplantation. Pediatr Pulmonol. 2020 Jul;55(7):1725–35. doi: https://doi.org/10.1002/ppul.24801
  23. Parisi GF, Cannata E, Manti S, Papale M, Meli M, Russo G, et al. Lung clearance index: A new measure of late lung complications of cancer therapy in children. Pediatr Pulmonol. 2020 Dec;55(12):3450–6. doi: https://doi.org/10.1002/ppul.25071
  24. Rueegg CS, Kriemler S, Zuercher SJ, Schindera C, Renner A, Hebestreit H, et al. A partially supervised physical activity program for adult and adolescent survivors of childhood cancer (SURfit): study design of a randomized controlled trial [NCT02730767]. BMC Cancer. 2017 Dec;17(1):822. doi: https://doi.org/10.1186/s12885-017-3801-8
  25. Nissenbaum C, Davies G, Horsley A, Davies JC. Monitoring early stage lung disease in cystic fibrosis. Curr Opin Pulm Med. 2020 Nov;26(6):671–8. doi: https://doi.org/10.1097/MCP.0000000000000732
  26. Stahl M, Wielpütz MO, Graeber SY, Joachim C, Sommerburg O, Kauczor HU, et al. Comparison of lung clearance index and magnetic resonance imaging for assessment of lung disease in children with cystic fibrosis. Am J Respir Crit Care Med. 2017 Feb;195(3):349–59. doi: https://doi.org/10.1164/rccm.201604-0893OC
  27. Schindera C, Usemann J, Zuercher SJ, Jung R, Kasteler R, Frauchiger B, et al. Pulmonary dysfunction after treatment for childhood cancer. Comparing multiple-breath washout with spirometry. Ann Am Thorac Soc. 2021 Feb;18(2):281–9. doi: https://doi.org/10.1513/AnnalsATS.202003-211OC
  28. Aljassim F, Robinson PD, Sigurs N, Gustafsson PM. A whisper from the silent lung zone. Pediatr Pulmonol. 2009 Aug;44(8):829–32. doi: https://doi.org/10.1002/ppul.20837
  29. Robinson PD, Latzin P, Verbanck S, Hall GL, Horsley A, Gappa M, et al. Consensus statement for inert gas washout measurement using multiple- and single- breath tests. Eur Respir J. 2013 Mar;41(3):507–22. doi: https://doi.org/10.1183/09031936.00069712
  30. Schneider C, et al. Multiple breath washout and imaging to detect early pulmonary toxicity in paediatric cancer patients and survivors: first results of a systematic review. Eur Respiratory Soc.; 2023.
  31. Adams M, Traunecker H, Doull I, Cox R. Bronchiectasis following treatment for high-risk neuroblastoma: A case series. Pediatr Blood Cancer. 2017 Oct;64(10):e26509. doi: https://doi.org/10.1002/pbc.26509
  32. De A, Guryev I, LaRiviere A, Kato R, Wee CP, Mascarenhas L, et al. Pulmonary function abnormalities in childhood cancer survivors treated with bleomycin. Pediatr Blood Cancer. 2014 Sep;61(9):1679–84. doi: https://doi.org/10.1002/pbc.25098
  33. De A, Mascarenhas L, Kamath S, LaRiviere A, Goodarzian F, Keens TG, et al. Pilot feasibility study of comprehensive pulmonary evaluation following lung radiation therapy. J Pediatr Hematol Oncol. 2015 Oct;37(7):e412–8. doi: https://doi.org/10.1097/MPH.0000000000000407
  34. Kim YJ, Kim WS, Choi YH, Cheon JE, Choi JY, Kang HJ, et al. Radiologic evaluation of pulmonary injury following carmustine- and cyclophosphamide-based preparative regimen for autologous peripheral blood stem cell transplantation in children. Pediatr Radiol. 2018 Dec;48(13):1875–83. doi: https://doi.org/10.1007/s00247-018-4223-8
  35. Oh JK, Jung JI, Han DH, Ahn MI, Park SH, Cho BS, et al. Multidetector row computed tomography quantification of bronchiolitis obliterans syndrome after hematopoietic stem cell transplantation: a pilot study. J Thorac Imaging. 2013 Mar;28(2):114–20. doi: https://doi.org/10.1097/RTI.0b013e3182690b42
  36. Oh SL, Lee JW, Yoo SY, Kim JH, Kim YJ, Han J, et al. Pleuroparenchymal fibroelastosis after hematopoietic stem cell transplantation in children: a propensity score-matched analysis. Eur Radiol. 2023 Mar;33(3):2266–76. doi: https://doi.org/10.1007/s00330-022-09188-2
  37. Pennati F, Walkup LL, Chhabra A, Towe C, Myers K, Aliverti A, et al. Quantitative inspiratory-expiratory chest CT to evaluate pulmonary involvement in pediatric hematopoietic stem-cell transplantation patients. Pediatr Pulmonol. 2021 May;56(5):1026–35. doi: https://doi.org/10.1002/ppul.25223
  38. Tantawy AA, Elbarbary N, Ahmed A, Mohamed NA, Ezz-Elarab S. Pulmonary complications in survivors of childhood hematological malignancies: single-center experience. Pediatr Hematol Oncol. 2011 Aug;28(5):403–17. doi: https://doi.org/10.3109/08880018.2011.576905
  39. Vinogradskiy Y, Faught A, Castillo R, Castillo E, Guerrero T, Miften M, et al. Using 4DCT-ventilation to characterize lung function changes for pediatric patients getting thoracic radiotherapy. J Appl Clin Med Phys. 2018 Sep;19(5):407–12. doi: https://doi.org/10.1002/acm2.12397
  40. Frauchiger BS, Carlens J, Herger A, Moeller A, Latzin P, Ramsey KA. Multiple breath washout quality control in the clinical setting. Pediatr Pulmonol. 2021 Jan;56(1):105–12. doi: https://doi.org/10.1002/ppul.25119
  41. ATS Guidelines & Reports. Available from: https://www.thoracic.org/statements/
  42. ERS Guidelines, statements and technical standards development programme. Available from: https://www.ersnet.org/science-and-research/development-programme/
  43. Quanjer PH, Stanojevic S, Cole TJ, Baur X, Hall GL, Culver BH, et al.; ERS Global Lung Function Initiative. Multi-ethnic reference values for spirometry for the 3-95-yr age range: the global lung function 2012 equations. Eur Respir J. 2012 Dec;40(6):1324–43. doi: https://doi.org/10.1183/09031936.00080312
  44. Baur X. [Recommendation of new reference values for spirometry and body plethysmography]. Pneumologie. 2013 Jul;67(7):401–5.
  45. Hall GL, Filipow N, Ruppel G, Okitika T, Thompson B, Kirkby J, et al.; contributing GLI Network members. Official ERS technical standard: global Lung Function Initiative reference values for static lung volumes in individuals of European ancestry. Eur Respir J. 2021 Mar;57(3):2000289. doi: https://doi.org/10.1183/13993003.00289-2020
  46. Stanojevic S, Graham BL, Cooper BG, Thompson BR, Carter KW, Francis RW, et al.; Global Lung Function Initiative TLCO working group; Global Lung Function Initiative (GLI) TLCO. Official ERS technical standards: global Lung Function Initiative reference values for the carbon monoxide transfer factor for Caucasians. Eur Respir J. 2017 Sep;50(3):1700010. doi: https://doi.org/10.1183/13993003.00010-2017
  47. Stanojevic S, Kaminsky DA, Miller MR, Thompson B, Aliverti A, Barjaktarevic I, et al. ERS/ATS technical standard on interpretive strategies for routine lung function tests. Eur Respir J. 2022 Jul;60(1):2101499. doi: https://doi.org/10.1183/13993003.01499-2021
  48. Kaminsky DA, Whitman T, Callas PW. DLCO versus DLCO/VA as predictors of pulmonary gas exchange. Respir Med. 2007 May;101(5):989–94. doi: https://doi.org/10.1016/j.rmed.2006.09.003
  49. Wyler F, Oestreich MA, Frauchiger BS, Ramsey KA, Latzin P. Correction of sensor crosstalk error in Exhalyzer D multiple-breath washout device significantly impacts outcomes in children with cystic fibrosis. J Appl Physiol. 2021 Sep;131(3):1148–56. doi: https://doi.org/10.1152/japplphysiol.00338.2021
  50. Bowerman C, Bhakta NR, Brazzale D, Cooper BR, Cooper J, Gochicoa-Rangel L, et al. A race-neutral approach to the interpretation of lung function measurements. Am J Respir Crit Care Med. 2023 Mar;207(6):768–74. doi: https://doi.org/10.1164/rccm.202205-0963OC
  51. Guillien A, Soumagne T, Regnard J, Degano B; Groupe Fonction de la SPLF. [The new reference equations of the Global Lung function Initiative (GLI) for pulmonary function tests]. Rev Mal Respir. 2018 Dec;35(10):1020–7. doi: https://doi.org/10.1016/j.rmr.2018.08.021
  52. Zapletal A, Samanek M, Paul T. Lung function in children and adolescents: methods, reference values. Progr Respir Res. 1987;22: 10.1159/isbn.978-3-318-04125-5
  53. Quanjer P. A and B. Van Zomeren, Summary equations of reference values. Bull Eur Physiopathol Respir. 1983;19(5):45–51.
  54. Kentgens AC, Latzin P, Anagnostopoulou P, Jensen R, Stahl M, Harper A, et al. Normative multiple-breath washout data in school-aged children corrected for sensor error. Eur Respir J. 2022 Aug;60(2):2102398. doi: https://doi.org/10.1183/13993003.02398-2021
  55. Husemann K, Berg N, Engel J, Port J, Joppek C, Tao Z, et al. Double tracer gas single-breath washout: reproducibility in healthy subjects and COPD. Eur Respir J. 2014 Nov;44(5):1210–22. doi: https://doi.org/10.1183/09031936.00085713
  56. Ramsey KA, Stanojevic S, Chavez L, Johnson N, Bowerman C, Hall GL, et al.; contributing GLI MBW task force members. Global Lung Function Initiative reference values for multiple breath washout indices. Eur Respir J. 2024 Dec;64(6):2400524. doi: https://doi.org/10.1183/13993003.00524-2024
  57. Horsley AR, Alrumuh A, Bianco B, Bayfield K, Tomlinson J, Jones A, et al. Lung clearance index in healthy volunteers, measured using a novel portable system with a closed circuit wash-in. PLoS One. 2020 Feb;15(2):e0229300. doi: https://doi.org/10.1371/journal.pone.0229300
  58. Bauman G, Bieri O. Matrix pencil decomposition of time-resolved proton MRI for robust and improved assessment of pulmonary ventilation and perfusion. Magn Reson Med. 2017 Jan;77(1):336–42. doi: https://doi.org/10.1002/mrm.26096
  59. Nyilas S, Bauman G, Sommer G, Stranzinger E, Pusterla O, Frey U, et al. Novel magnetic resonance technique for functional imaging of cystic fibrosis lung disease. Eur Respir J. 2017 Dec;50(6):1701464. doi: https://doi.org/10.1183/13993003.01464-2017
  60. Pusterla O, Heule R, Santini F, Weikert T, Willers C, Andermatt S, et al. MRI lung lobe segmentation in pediatric cystic fibrosis patients using a recurrent neural network trained with publicly accessible CT datasets. Magn Reson Med. 2022 Jul;88(1):391–405. doi: https://doi.org/10.1002/mrm.29184
  61. Pusterla O, et al. An automated pipeline for computation and analysis of functional ventilation and perfusion lung MRI with matrix pencil decomposition: TrueLung. arXiv preprint arXiv:doi: https://doi.org/2404.18275, 2024. Z Med Phys. 2024 Sep 19:S0939-3889(24)00084-9.
  62. Eichinger M, Optazaite DE, Kopp-Schneider A, Hintze C, Biederer J, Niemann A, et al. Morphologic and functional scoring of cystic fibrosis lung disease using MRI. Eur J Radiol. 2012 Jun;81(6):1321–9. doi: https://doi.org/10.1016/j.ejrad.2011.02.045
  63. Doellinger F, Bauman G, Roehmel J, Stahl M, Posch H, Steffen IG, et al. Contrast agent-free functional magnetic resonance imaging with matrix pencil decomposition to quantify abnormalities in lung perfusion and ventilation in patients with cystic fibrosis. Front Med (Lausanne). 2024 Jun;11:1349466. doi: https://doi.org/10.3389/fmed.2024.1349466
  64. Passport for Care. Available from: https://www.passportforcare.org
  65. Waespe N, Strebel S, Marino D, Mattiello V, Muet F, Nava T, et al. Predictors for participation in DNA self-sampling of childhood cancer survivors in Switzerland. BMC Med Res Methodol. 2021 Oct;21(1):236. doi: https://doi.org/10.1186/s12874-021-01428-1
  66. SentrySuite™ Software Solution. Available from: https://intl.vyaire.com/products/sentrysuite-software-solution
  67. Belle FN, et al. Swiss Childhood Cancer Registry: Annual Report 2017/2018. 2019. Available from: https://www.kinderkrebsregister.ch/wp-content/uploads/sites/2/2019/09/FINAL-Annual-Report_2017_2018_with-CC-license.pdf
  68. Fidler MM, Reulen RC, Bright CJ, Henson KE, Kelly JS, Jenney M, et al.; British Childhood Cancer Survivor Study (BCCSS) Steering Group. Respiratory mortality of childhood, adolescent and young adult cancer survivors. Thorax. 2018 Oct;73(10):959–68. doi: https://doi.org/10.1136/thoraxjnl-2017-210683
  69. Kasteler R, Otth M, Halbeisen FS, Mader L, Singer F, Rössler J, et al. Longitudinal assessment of lung function in Swiss childhood cancer survivors-A multicenter cohort study. Pediatr Pulmonol. 2024 Jan;59(1):169–80. doi: https://doi.org/10.1002/ppul.26738
  70. The Swiss Childhood Cancer Survivor Study - Follow-up (SCCSS-FollowUp). (SCCSS-FU). 2022; Available from: https://www.clinicaltrials.gov/study/NCT04732273
  71. Hudson MM, Ness KK, Gurney JG, Mulrooney DA, Chemaitilly W, Krull KR, et al. Clinical ascertainment of health outcomes among adults treated for childhood cancer. JAMA. 2013 Jun;309(22):2371–81. doi: https://doi.org/10.1001/jama.2013.6296
  72. Children's Oncology Group long-term follow-up guidelines for survivors of childhood, adolescent and young adult cancers, Version 5.0. Monrovia, CA: Children's Oncology Group; 2018. This guideline provides a very thorough approach to the monitoring of risks associated with cancer and its treatment, particular to children, adolescents and young adults, 2019. Available from: http://www.survivorshipguidelines.org/pdf/2018/cog_ltfu_guidelines_v5.pdf
  73. Lewandowska A. Influence of a child’s cancer on the functioning of their family. Children (Basel). 2021 Jul;8(7):592. doi: https://doi.org/10.3390/children8070592
  74. Steliarova-Foucher E, Stiller C, Lacour B, Kaatsch P. International Classification of Childhood Cancer, third edition. Cancer. 2005 Apr;103(7):1457–67. 10.1002/cncr.20910