Skip to main navigation menu Skip to main content Skip to site footer

Review article: Biomedical intelligence

Vol. 150 No. 1718 (2020)

Management of neurosurgical implant-associated infections

  • Anna Conen
  • Andreas Raabe
  • Karl Schaller
  • Christoph A Fux
  • Peter Vajkoczy
  • Andrej Trampuz
DOI
https://doi.org/10.4414/smw.2020.20208
Cite this as:
Swiss Med Wkly. 2020;150:w20208
Published
24.04.2020

Summary

With the technical developments in neurosurgery, increasing numbers of neurosurgical implants are used in an increasingly aged population of patients with several comorbidities. Consequently, the number of neurosurgical implant-associated infections is continuously raising, resulting in significant morbidity and mortality, including disfiguring skull deformities and lack of brain protection. In this article we review infections associated with craniotomy, cranioplasty, neurostimulators, internal cerebrospinal fluid shunts, and external ventricular and lumbar cerebrospinal fluid drainages.

In all implant-associated infections biofilms are involved, which are difficult to eradicate. A low number of microorganisms is sufficient to form a biofilm on the implant surface. In most infections, microorganisms of the skin flora are involved. Microorganisms reach the implant during surgery or immediately thereafter as a result of wound healing disturbances. In about two thirds of patients, implant-associated infections manifest early (within the first month after surgery), whereas the remaining infections present later as a result of low-grade infections or by direct extension from adjacent infections (per continuitatem) to the implants due to soft tissue damage. Except for ventriculo-atrial cerebrospinal fluid shunts, neurosurgical implants are rarely infected by the haematogenous route.

In this article we review established and clinically validated concepts for the management of biofilm-associated infections in orthopaedic and trauma surgery, which can be extrapolated to other surgical disciplines that use implants. However, the evidence for the success of this extrapolation to neurosurgical patients is sparse and has not been evaluated in large patient populations. For favourable outcome, an optimised microbiological diagnosis including sonication of removed implants and prolonged incubation of cultures is required. Furthermore, a combined surgical and antimicrobial management strategy is needed. Surgery includes an appropriate debridement with or without implant exchange or removal, depending on the age of the biofilm and the soft tissue condition. Antimicrobial treatment includes a prolonged biofilm-active therapy, typically for 4–12 weeks. This concept is attractive, because in selected patients, implants can be retained or exchanged in a one-stage surgical procedure, which improves not only quality of life, but also decreases morbidity because every additional neurosurgical intervention can lead to secondary complications, including intracerebral bleeding or ischemia.

References

  1. Darouiche RO. Treatment of infections associated with surgical implants. N Engl J Med. 2004;350(14):1422–9. doi:.https://doi.org/10.1056/NEJMra035415
  2. Martin RM, Zimmermann LL, Huynh M, Polage CR. Diagnostic approach to health care- and device-associated central nervous system infections. J Clin Microbiol. 2018;56(11):e00861-18. doi:.https://doi.org/10.1128/JCM.00861-18
  3. Di Rienzo A, Colasanti R, Gladi M, Pompucci A, Della Costanza M, Paracino R, et al. Sinking flap syndrome revisited: the who, when and why. Neurosurg Rev. 2020;43(1):323–35. doi:.https://doi.org/10.1007/s10143-019-01148-7
  4. Vinchon M, Dhellemmes P. Cerebrospinal fluid shunt infection: risk factors and long-term follow-up. Childs Nerv Syst. 2006;22(7):692–7. doi:.https://doi.org/10.1007/s00381-005-0037-8
  5. Zarrouk V, Vassor I, Bert F, Bouccara D, Kalamarides M, Bendersky N, et al. Evaluation of the management of postoperative aseptic meningitis. Clin Infect Dis. 2007;44(12):1555–9. doi:.https://doi.org/10.1086/518169
  6. Zimmerli W, Waldvogel FA, Vaudaux P, Nydegger UE. Pathogenesis of foreign body infection: description and characteristics of an animal model. J Infect Dis. 1982;146(4):487–97. doi:.https://doi.org/10.1093/infdis/146.4.487
  7. James RC, MacLeod CJ. Induction of staphylococcal infections in mice with small inocula introduced on sutures. Br J Exp Pathol. 1961;42:266–77.
  8. Costerton JW, Stewart PS, Greenberg EP. Bacterial biofilms: a common cause of persistent infections. Science. 1999;284(5418):1318–22. doi:.https://doi.org/10.1126/science.284.5418.1318
  9. Bjarnsholt T, Ciofu O, Molin S, Givskov M, Høiby N. Applying insights from biofilm biology to drug development - can a new approach be developed? Nat Rev Drug Discov. 2013;12(10):791–808. doi:.https://doi.org/10.1038/nrd4000
  10. Conen A, Walti LN, Merlo A, Fluckiger U, Battegay M, Trampuz A. Characteristics and treatment outcome of cerebrospinal fluid shunt-associated infections in adults: a retrospective analysis over an 11-year period. Clin Infect Dis. 2008;47(1):73–82. doi:.https://doi.org/10.1086/588298
  11. Korinek AM, Baugnon T, Golmard JL, van Effenterre R, Coriat P, Puybasset L. Risk factors for adult nosocomial meningitis after craniotomy: role of antibiotic prophylaxis. Neurosurgery. 2008;62(Suppl 2):126–33. doi:.https://doi.org/10.1227/01.neu.0000316256.44349.b1
  12. Karczewski D, Winkler T, Renz N, Trampuz A, Lieb E, Perka C, et al. A standardized interdisciplinary algorithm for the treatment of prosthetic joint infections. Bone Joint J. 2019;101-B(2):132–9. doi:.https://doi.org/10.1302/0301-620X.101B2.BJJ-2018-1056.R1
  13. Sendi P, Lötscher PO, Kessler B, Graber P, Zimmerli W, Clauss M. Debridement and implant retention in the management of hip periprosthetic joint infection: outcomes following guided and rapid treatment at a single centre. Bone Joint J. 2017;99-B(3):330–6. doi:.https://doi.org/10.1302/0301-620X.99B3.BJJ-2016-0609.R1
  14. Tschudin-Sutter S, Frei R, Dangel M, Jakob M, Balmelli C, Schaefer DJ, et al. Validation of a treatment algorithm for orthopaedic implant-related infections with device-retention-results from a prospective observational cohort study. Clin Microbiol Infect. 2016;22(5):457.e1–9. doi:.https://doi.org/10.1016/j.cmi.2016.01.004
  15. Trampuz A, Piper KE, Jacobson MJ, Hanssen AD, Unni KK, Osmon DR, et al. Sonication of removed hip and knee prostheses for diagnosis of infection. N Engl J Med. 2007;357(7):654–63. doi:.https://doi.org/10.1056/NEJMoa061588
  16. Tunkel AR, Hasbun R, Bhimraj A, Byers K, Kaplan SL, Scheld WM, et al. 2017 Infectious Diseases Society of America’s clinical practice guidelines for healthcare-associated ventriculitis and meningitis. Clin Infect Dis. 2017;64(6):e34–65. doi:.https://doi.org/10.1093/cid/ciw861
  17. Zimmerli W, Trampuz A, Ochsner PE. Prosthetic-joint infections. N Engl J Med. 2004;351(16):1645–54. doi:.https://doi.org/10.1056/NEJMra040181
  18. Kleber C, Schaser KD, Trampuz A. Komplikationsmanagement bei infizierter Osteosynthese [Complication management of infected osteosynthesis: Therapy algorithm for peri-implant infections]. Chirurg. 2015;86(10):925–34. German. doi:.https://doi.org/10.1007/s00104-015-0073-1
  19. Furustrand Tafin U, Corvec S, Betrisey B, Zimmerli W, Trampuz A. Role of rifampin against Propionibacterium acnes biofilm in vitro and in an experimental foreign-body infection model. Antimicrob Agents Chemother. 2012;56(4):1885–91. doi:.https://doi.org/10.1128/AAC.05552-11
  20. Furustrand Tafin U, Majic I, Zalila Belkhodja C, Betrisey B, Corvec S, Zimmerli W, et al. Gentamicin improves the activities of daptomycin and vancomycin against Enterococcus faecalis in vitro and in an experimental foreign-body infection model. Antimicrob Agents Chemother. 2011;55(10):4821–7. doi:.https://doi.org/10.1128/AAC.00141-11
  21. John AK, Baldoni D, Haschke M, Rentsch K, Schaerli P, Zimmerli W, et al. Efficacy of daptomycin in implant-associated infection due to methicillin-resistant Staphylococcus aureus: importance of combination with rifampin. Antimicrob Agents Chemother. 2009;53(7):2719–24. doi:.https://doi.org/10.1128/AAC.00047-09
  22. Zimmerli W, Widmer AF, Blatter M, Frei R, Ochsner PE ; Foreign-Body Infection (FBI) Study Group. Role of rifampin for treatment of orthopedic implant-related staphylococcal infections: a randomized controlled trial. JAMA. 1998;279(19):1537–41. doi:.https://doi.org/10.1001/jama.279.19.1537
  23. Yano MH, Klautau GB, da Silva CB, Nigro S, Avanzi O, Mercadante MT, et al. Improved diagnosis of infection associated with osteosynthesis by use of sonication of fracture fixation implants. J Clin Microbiol. 2014;52(12):4176–82. doi:.https://doi.org/10.1128/JCM.02140-14
  24. Thomaidis PC, Pantazatou A, Kamariotis S, Vlachos K, Roussos G, Panagiotou P, et al. Sonication assisted microbiological diagnosis of implant-related infection caused by Prevotella disiens and Staphylococcus epidermidis in a patient with cranioplasty. BMC Res Notes. 2015;8(1):307. doi:.https://doi.org/10.1186/s13104-015-1274-x
  25. Jost GF, Wasner M, Taub E, Walti L, Mariani L, Trampuz A. Sonication of catheter tips for improved detection of microorganisms on external ventricular drains and ventriculo-peritoneal shunts. J Clin Neurosci. 2014;21(4):578–82. doi:.https://doi.org/10.1016/j.jocn.2013.05.025
  26. Prinz V, Bayerl S, Renz N, Trampuz A, Vajkoczy P, Finger T. Sonication improves pathogen detection in ventriculoperitoneal shunt-associated infections. Neurosurgery. 2019;85(4):516–23. doi:.https://doi.org/10.1093/neuros/nyy383
  27. Ascione T, Balato G, Mariconda M, Rotondo R, Baldini A, Pagliano P. Continuous antibiotic therapy can reduce recurrence of prosthetic joint infection in patients undergoing 2-stage exchange. J Arthroplasty. 2019;34(4):704–9. doi:.https://doi.org/10.1016/j.arth.2018.12.017
  28. Nau R, Sörgel F, Eiffert H. Penetration of drugs through the blood-cerebrospinal fluid/blood-brain barrier for treatment of central nervous system infections. Clin Microbiol Rev. 2010;23(4):858–83. doi:.https://doi.org/10.1128/CMR.00007-10
  29. Gilbert D, Chambers H, Eliopoulos G, Saag M, Pavia A, eds. Sanford Guide to Antimicrobial Therapy. Sperryville, USA: Antimicrobial Therapy; 2019.
  30. Widmer AF, Frei R, Rajacic Z, Zimmerli W. Correlation between in vivo and in vitro efficacy of antimicrobial agents against foreign body infections. J Infect Dis. 1990;162(1):96–102. doi:.https://doi.org/10.1093/infdis/162.1.96
  31. Pfausler B, Spiss H, Dittrich P, Zeitlinger M, Schmutzhard E, Joukhadar C. Concentrations of fosfomycin in the cerebrospinal fluid of neurointensive care patients with ventriculostomy-associated ventriculitis. J Antimicrob Chemother. 2004;53(5):848–52. doi:.https://doi.org/10.1093/jac/dkh158
  32. Putensen C, Ellger B, Sakka SG, Weyland A, Schmidt K, Zoller M, et al. Current clinical use of intravenous fosfomycin in ICU patients in two European countries. Infection. 2019;47(5):827–36. doi:.https://doi.org/10.1007/s15010-019-01323-4
  33. Renz N, Rakow A, Müller M, Perka C, Trampuz A. Long-term antimicrobial suppression prevents treatment failure of streptococcal periprosthetic joint infection. J Infect. 2019;79(3):236–44. doi:.https://doi.org/10.1016/j.jinf.2019.06.015
  34. Moreira-Gonzalez A, Jackson IT, Miyawaki T, Barakat K, DiNick V. Clinical outcome in cranioplasty: critical review in long-term follow-up. J Craniofac Surg. 2003;14(2):144–53. doi:.https://doi.org/10.1097/00001665-200303000-00003
  35. Yadla S, Campbell PG, Chitale R, Maltenfort MG, Jabbour P, Sharan AD. Effect of early surgery, material, and method of flap preservation on cranioplasty infections: a systematic review. Neurosurgery. 2011;68(4):1124–9, discussion 1130. doi:.https://doi.org/10.1227/NEU.0b013e31820a5470
  36. Buchanan IA, Donoho DA, Patel A, Lin M, Wen T, Ding L, et al. Predictors of surgical site infection after nonemergent craniotomy: A nationwide readmission database analysis. World Neurosurg. 2018;120:e440–52. doi:.https://doi.org/10.1016/j.wneu.2018.08.102
  37. Shi ZH, Xu M, Wang YZ, Luo XY, Chen GQ, Wang X, et al. Post-craniotomy intracranial infection in patients with brain tumors: a retrospective analysis of 5723 consecutive patients. Br J Neurosurg. 2017;31(1):5–9. doi:.https://doi.org/10.1080/02688697.2016.1253827
  38. Strahm C, Albrich WC, Zdravkovic V, Schöbi B, Hildebrandt G, Schlegel M. Infection rate after cranial neurosurgical procedures: A prospective single-center study. World Neurosurg. 2018;111:e277–85. doi:.https://doi.org/10.1016/j.wneu.2017.12.062
  39. Sneh-Arbib O, Shiferstein A, Dagan N, Fein S, Telem L, Muchtar E, et al. Surgical site infections following craniotomy focusing on possible post-operative acquisition of infection: prospective cohort study. Eur J Clin Microbiol Infect Dis. 2013;32(12):1511–6. doi:.https://doi.org/10.1007/s10096-013-1904-y
  40. Lieber BA, Appelboom G, Taylor BE, Lowy FD, Bruce EM, Sonabend AM, et al. Preoperative chemotherapy and corticosteroids: independent predictors of cranial surgical-site infections. J Neurosurg. 2016;125(1):187–95. doi:.https://doi.org/10.3171/2015.4.JNS142719
  41. Rubeli SL, D’Alonzo D, Mueller B, Bartlomé N, Fankhauser H, Bucheli E, et al. Implementation of an infection prevention bundle is associated with reduced surgical site infections in cranial neurosurgery. Neurosurg Focus. 2019;47(2):E3. doi:.https://doi.org/10.3171/2019.5.FOCUS19272
  42. Dashti SR, Baharvahdat H, Spetzler RF, Sauvageau E, Chang SW, Stiefel MF, et al. Operative intracranial infection following craniotomy. Neurosurg Focus. 2008;24(6):E10. doi:.https://doi.org/10.3171/FOC/2008/24/6/E10
  43. Renz N, Özdirik B, Finger T, Vajkoczy P, Trampuz A. Infections after cranial neurosurgery: Prospective cohort of 103 episodes treated according to a standardized algorithm. World Neurosurg. 2018;116:e491–9. doi:.https://doi.org/10.1016/j.wneu.2018.05.017
  44. Kshettry VR, Hardy S, Weil RJ, Angelov L, Barnett GH. Immediate titanium cranioplasty after debridement and craniectomy for postcraniotomy surgical site infection. Neurosurgery. 2012;70(1, Suppl Operative):8–14, discussion 14–5.
  45. Lange N, Berndt M, Jörger AK, Wagner A, Lummel N, Ryang YM, et al. Clinical characteristics and course of postoperative brain abscess. World Neurosurg. 2018;120:e675–83. doi:.https://doi.org/10.1016/j.wneu.2018.08.143
  46. Riordan MA, Simpson VM, Hall WA. Analysis of factors contributing to infections after cranioplasty: A single-institution retrospective chart review. World Neurosurg. 2016;87:207–13. doi:.https://doi.org/10.1016/j.wneu.2015.11.070
  47. Sundseth J, Sundseth A, Berg-Johnsen J, Sorteberg W, Lindegaard KF. Cranioplasty with autologous cryopreserved bone after decompressive craniectomy: complications and risk factors for developing surgical site infection. Acta Neurochir (Wien). 2014;156(4):805–11, discussion 811. doi:.https://doi.org/10.1007/s00701-013-1992-6
  48. Vince GH, Kraschl J, Rauter H, Stein M, Grossauer S, Uhl E. Comparison between autologous bone grafts and acrylic (PMMA) implants - A retrospective analysis of 286 cranioplasty procedures. J Clin Neurosci. 2019;61:205–9. doi:.https://doi.org/10.1016/j.jocn.2018.10.017
  49. Morton RP, Abecassis IJ, Hanson JF, Barber J, Nerva JD, Emerson SN, et al. Predictors of infection after 754 cranioplasty operations and the value of intraoperative cultures for cryopreserved bone flaps. J Neurosurg. 2016;125(3):766–70. doi:.https://doi.org/10.3171/2015.8.JNS151390
  50. Quah BL, Low HL, Wilson MH, Bimpis A, Nga VDW, Lwin S, et al. Is there an optimal time for performing cranioplasties? Results from a prospective multinational study. World Neurosurg. 2016;94:13–7. doi:.https://doi.org/10.1016/j.wneu.2016.06.081
  51. Wallace DJ, McGinity MJ, Floyd JR, 2nd. Bone flap salvage in acute surgical site infection after craniotomy for tumor resection. Neurosurg Rev. 2018;41(4):1071–7. doi:.https://doi.org/10.1007/s10143-018-0955-z
  52. Abode-Iyamah KO, Chiang HY, Woodroffe RW, Park B, Jareczek FJ, Nagahama Y, et al. Deep brain stimulation hardware-related infections: 10-year experience at a single institution. J Neurosurg. 2019;130:629–38. doi:.https://doi.org/10.3171/2017.9.JNS1780
  53. Follett KA, Boortz-Marx RL, Drake JM, DuPen S, Schneider SJ, Turner MS, et al. Prevention and management of intrathecal drug delivery and spinal cord stimulation system infections. Anesthesiology. 2004;100(6):1582–94. doi:.https://doi.org/10.1097/00000542-200406000-00034
  54. Bjerknes S, Skogseid IM, Sæhle T, Dietrichs E, Toft M. Surgical site infections after deep brain stimulation surgery: frequency, characteristics and management in a 10-year period. PLoS One. 2014;9(8):e105288. doi:.https://doi.org/10.1371/journal.pone.0105288
  55. Jitkritsadakul O, Bhidayasiri R, Kalia SK, Hodaie M, Lozano AM, Fasano A. Systematic review of hardware-related complications of Deep Brain Stimulation: Do new indications pose an increased risk? Brain Stimul. 2017;10(5):967–76. doi:.https://doi.org/10.1016/j.brs.2017.07.003
  56. Sillay KA, Larson PS, Starr PA. Deep brain stimulator hardware-related infections: incidence and management in a large series. Neurosurgery. 2008;62(2):360–6, discussion 366–7. doi:.https://doi.org/10.1227/01.neu.0000316002.03765.33
  57. Bhatia S, Zhang K, Oh M, Angle C, Whiting D. Infections and hardware salvage after deep brain stimulation surgery: a single-center study and review of the literature. Stereotact Funct Neurosurg. 2010;88(3):147–55. doi:.https://doi.org/10.1159/000303528
  58. Hardaway FA, Raslan AM, Burchiel KJ. Deep brain stimulation-related infections: Analysis of rates, timing, and seasonality. Neurosurgery. 2018;83(3):540–7. doi:.https://doi.org/10.1093/neuros/nyx505
  59. Shamji MF, Westwick HJ, Heary RF. Complications related to the use of spinal cord stimulation for managing persistent postoperative neuropathic pain after lumbar spinal surgery. Neurosurg Focus. 2015;39(4):E15. doi:.https://doi.org/10.3171/2015.7.FOCUS15260
  60. Cameron T. Safety and efficacy of spinal cord stimulation for the treatment of chronic pain: a 20-year literature review. J Neurosurg. 2004;100(3, Suppl Spine):254–67.
  61. Kumar K, Wilson JR, Taylor RS, Gupta S. Complications of spinal cord stimulation, suggestions to improve outcome, and financial impact. J Neurosurg Spine. 2006;5(3):191–203. doi:.https://doi.org/10.3171/spi.2006.5.3.191
  62. Borgbjerg BM, Gjerris F, Albeck MJ, Hauerberg J, Børgesen SV. A comparison between ventriculo-peritoneal and ventriculo-atrial cerebrospinal fluid shunts in relation to rate of revision and durability. Acta Neurochir (Wien). 1998;140(5):459–64, discussion 465. doi:.https://doi.org/10.1007/s007010050125
  63. McGirt MJ, Zaas A, Fuchs HE, George TM, Kaye K, Sexton DJ. Risk factors for pediatric ventriculoperitoneal shunt infection and predictors of infectious pathogens. Clin Infect Dis. 2003;36(7):858–62. doi:.https://doi.org/10.1086/368191
  64. Kulkarni AV, Drake JM, Lamberti-Pasculli M. Cerebrospinal fluid shunt infection: a prospective study of risk factors. J Neurosurg. 2001;94(2):195–201. doi:.https://doi.org/10.3171/jns.2001.94.2.0195
  65. Mallucci CL, Jenkinson MD, Conroy EJ, Hartley JC, Brown M, Dalton J, et al.; BASICS Study collaborators. Antibiotic or silver versus standard ventriculoperitoneal shunts (BASICS): a multicentre, single-blinded, randomised trial and economic evaluation. Lancet. 2019;394(10208):1530–9. doi:.https://doi.org/10.1016/S0140-6736(19)31603-4
  66. Berard X, Puges M, Pinaquy JB, Cazanave C, Stecken L, Bordenave L, et al. In vitro evidence of improved antimicrobial efficacy of silver and triclosan containing vascular grafts compared with rifampicin soaked grafts. Eur J Vasc Endovasc Surg. 2019;57(3):424–32. doi:.https://doi.org/10.1016/j.ejvs.2018.08.053
  67. Pelegrín I, Lora-Tamayo J, Gómez-Junyent J, Sabé N, García-Somoza D, Gabarrós A, et al. Management of ventriculoperitoneal shunt infections in adults: Analysis of risk factors associated with treatment failure. Clin Infect Dis. 2017;64(8):989–97. doi:.https://doi.org/10.1093/cid/cix005
  68. Burström G, Andresen M, Bartek J, Jr, Fytagoridis A. Subacute bacterial endocarditis and subsequent shunt nephritis from ventriculoatrial shunting 14 years after shunt implantation. BMJ Case Rep. 2014;2014(jun24 1):bcr2014204655. doi:.https://doi.org/10.1136/bcr-2014-204655
  69. Sacar S, Turgut H, Toprak S, Cirak B, Coskun E, Yilmaz O, et al. A retrospective study of central nervous system shunt infections diagnosed in a university hospital during a 4-year period. BMC Infect Dis. 2006;6(1):43. doi:.https://doi.org/10.1186/1471-2334-6-43
  70. von der Brelie C, Simon A, Gröner A, Molitor E, Simon M. Evaluation of an institutional guideline for the treatment of cerebrospinal fluid shunt-associated infections. Acta Neurochir (Wien). 2012;154(9):1691–7. doi:.https://doi.org/10.1007/s00701-012-1329-x
  71. James HE, Walsh JW, Wilson HD, Connor JD. The management of cerebrospinal fluid shunt infections: a clinical experience. Acta Neurochir (Wien). 1981;59(3-4):157–66. doi:.https://doi.org/10.1007/BF01406345
  72. Habib G, Lancellotti P, Antunes MJ, Bongiorni MG, Casalta JP, Del Zotti F, et al.; ESC Scientific Document Group. 2015 ESC Guidelines for the management of infective endocarditis: The task force for the management of infective endocarditis of the European Society of Cardiology (ESC). Endorsed by: European Association for Cardio-Thoracic Surgery (EACTS), the European Association of Nuclear Medicine (EANM). Eur Heart J. 2015;36(44):3075–128. doi:.https://doi.org/10.1093/eurheartj/ehv319
  73. Walti LN, Conen A, Coward J, Jost GF, Trampuz A. Characteristics of infections associated with external ventricular drains of cerebrospinal fluid. J Infect. 2013;66(5):424–31. doi:.https://doi.org/10.1016/j.jinf.2012.12.010
  74. Zhou YJ, Wu JN, Chen LJ, Zhao HY. Comparison of infection rate with tunneled vs standard external ventricular drainage: A prospective, randomized controlled trial. Clin Neurol Neurosurg. 2019;184:105416. doi:.https://doi.org/10.1016/j.clineuro.2019.105416
  75. Arabi Y, Memish ZA, Balkhy HH, Francis C, Ferayan A, Al Shimemeri A, et al. Ventriculostomy-associated infections: incidence and risk factors. Am J Infect Control. 2005;33(3):137–43. doi:.https://doi.org/10.1016/j.ajic.2004.11.008
  76. Lyke KE, Obasanjo OO, Williams MA, O’Brien M, Chotani R, Perl TM. Ventriculitis complicating use of intraventricular catheters in adult neurosurgical patients. Clin Infect Dis. 2001;33(12):2028–33. doi:.https://doi.org/10.1086/324492
  77. Jamjoom AAB, Joannides AJ, Poon MT, Chari A, Zaben M, Abdulla MAH, et al.; British Neurosurgical Trainee Research Collaborative. Prospective, multicentre study of external ventricular drainage-related infections in the UK and Ireland. J Neurol Neurosurg Psychiatry. 2018;89(2):120–6. doi:.https://doi.org/10.1136/jnnp-2017-316415
  78. Nilsson A, Uvelius E, Cederberg D, Kronvall E. Silver-coated ventriculostomy catheters do not reduce rates of clinically diagnosed ventriculitis. World Neurosurg. 2018;117:e411–6. doi:.https://doi.org/10.1016/j.wneu.2018.06.045
  79. Hoffman H, Jalal MS, Chin LS. The incidence of meningitis in patients with traumatic brain injury undergoing external ventricular drain placement: A nationwide inpatient sample analysis. Neurocrit Care. 2019;30(3):666–74. doi:.https://doi.org/10.1007/s12028-018-0656-z
  80. Kohli G, Singh R, Herschman Y, Mammis A. Infection incidence associated with external ventriculostomy placement: A comparison of outcomes in the emergency department, intensive care unit, and operating room. World Neurosurg. 2018;110:e135–40. doi:.https://doi.org/10.1016/j.wneu.2017.10.129
  81. Klimo P, Jr, Thompson CJ, Baird LC, Flannery AM ; Pediatric Hydrocephalus Systematic Review and Evidence-Based Guidelines Task Force. Pediatric hydrocephalus: systematic literature review and evidence-based guidelines. Part 7: Antibiotic-impregnated shunt systems versus conventional shunts in children: a systematic review and meta-analysis. J Neurosurg Pediatr. 2014;14(Suppl 1):53–9. doi:.https://doi.org/10.3171/2014.7.PEDS14327
  82. Wiegand J, Hickson L, Merz TM. Indicators of external ventricular drainage-related infections--a retrospective observational study. Acta Neurochir (Wien). 2016;158(3):595–601, discussion 601. doi:.https://doi.org/10.1007/s00701-016-2709-4
  83. Berger-Estilita J, Passer M, Giles M, Wiegand J, Merz TM. Modalities and accuracy of diagnosis of external ventricular drainage-related infections: a prospective multicentre observational cohort study. Acta Neurochir (Wien). 2018;160(10):2039–47. doi:.https://doi.org/10.1007/s00701-018-3643-4
  84. Grille P, Verga F, Biestro A. Diagnosis of ventriculostomy-related infection: Is cerebrospinal fluid lactate measurement a useful tool? J Clin Neurosci. 2017;45:243–7. doi:.https://doi.org/10.1016/j.jocn.2017.07.031
  85. Leib SL, Boscacci R, Gratzl O, Zimmerli W. Predictive value of cerebrospinal fluid (CSF) lactate level versus CSF/blood glucose ratio for the diagnosis of bacterial meningitis following neurosurgery. Clin Infect Dis. 1999;29(1):69–74. doi:.https://doi.org/10.1086/520184
  86. Lunardi LW, Zimmer ER, Dos Santos SC, Merzoni J, Portela LV, Stefani MA. Cell index in the diagnosis of external ventricular drain-related infections. World Neurosurg. 2017;106:504–8. doi:.https://doi.org/10.1016/j.wneu.2017.07.012
  87. Pfausler B, Beer R, Engelhardt K, Kemmler G, Mohsenipour I, Schmutzhard E. Cell index--a new parameter for the early diagnosis of ventriculostomy (external ventricular drainage)-related ventriculitis in patients with intraventricular hemorrhage? Acta Neurochir (Wien). 2004;146(5):477–81. doi:.https://doi.org/10.1007/s00701-004-0258-8
  88. Schade RP, Schinkel J, Roelandse FW, Geskus RB, Visser LG, van Dijk JM, et al. Lack of value of routine analysis of cerebrospinal fluid for prediction and diagnosis of external drainage-related bacterial meningitis. J Neurosurg. 2006;104(1):101–8. doi:.https://doi.org/10.3171/jns.2006.104.1.101
  89. Hader WJ, Steinbok P. The value of routine cultures of the cerebrospinal fluid in patients with external ventricular drains. Neurosurgery. 2000;46(5):1149–53, discussion 1153–5. doi:.https://doi.org/10.1097/00006123-200005000-00025

Most read articles by the same author(s)

1 2 > >>