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Summary
Psychoactive substances are compounds that can influ-
ence perception, consciousness, cognition, and emotions.
The psychoactive substances caffeine, nicotine, cannabis,
and psilocybin all originate from natural sources and can
be used without complex processing or synthesis. Their
natural availability has contributed to a long-standing his-
tory of human use and cultural significance. Caffeine and
nicotine are freely available and commonly used as every-
day stimulants, whereas psilocybin is more strictly regu-
lated and cannabis has been legalised in some countries
and regions. Some of these substances have been inten-
sively studied, and their pharmacological and toxicological
properties are well known, but ongoing research continues
to investigate their therapeutic use for specific diseases
and disorders. This narrative review aims to provide an
overview of the pharmacology and toxicology of these four
naturally occurring psychoactive substances, including a
summary of the currently available evidence on their ther-
apeutic potential, health benefits, and associated risks.

Introduction

Psychoactive substances exert their effects on the central
nervous system, influencing perception, mood, emotions,
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CBN: cannabinol

CYP: cytochrome P450 enzymes

LSD: lysergic acid diethylamide

MAO: monoamine oxidase

THC: ∆9-tetrahydrocannabinol

TRPV1: transient receptor potential vanilloid 1

consciousness, cognition, and behaviour [1]. These sub-
stances fall broadly into two categories: synthetic com-
pounds and those derived from natural sources. While nat-
urally occurring substances are sometimes viewed as
“healthier” by users, the origin generally does not influ-
ence the toxicological properties. Caffeine, nicotine,
cannabis, and psilocybin are all naturally occurring psy-
choactive substances and have long-standing sociocultural
significance. However, their regulatory frameworks vary
considerably, from caffeine and nicotine being readily
available and integrated into many daily routines to the
more stringent regulations surrounding cannabis and psilo-
cybin.

Nicotine, primarily found in tobacco, has been intensely
studied because of its strong dependence liability and the
deleterious effects associated with tobacco smoking. Caf-
feine is a global mainstay of daily routines because of
its productivity-enhancing and attention-increasing effects.
Cannabis has recently garnered heightened attention be-
cause of its potential beneficial effects and its evolving le-
gal status [2]. Similarly, psilocybin has sparked a lot of
interest as a potential therapeutic agent in challenging-to-
treat conditions like depression and anxiety disorders [3,
4]. All these substances – nicotine, caffeine, cannabis and
psilocybin – have a generally favourable safety profile,
increasing their attractiveness as potential therapeutic op-
tions for specific conditions.

This narrative review aims to provide an overview of the
current understanding and available data on four selected
natural psychoactive substances (two commonly used in
everyday life, i.e. caffeine and nicotine, and two with vary-
ing regional regulations, i.e. cannabis and psilocybin) that
have gained increasing interest because of their potential
therapeutic uses in recent years. We highlight current ther-
apeutic applications and discuss evidence pointing towards
potential novel uses.
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Caffeine

Caffeine, or 1,3,7-trimethylxanthine, is a naturally occur-
ring alkaloid found in the beans of, for example, the Ara-
bica coffee plant and more than 60 other plants [5–7]. It is
the most commonly used psychostimulant worldwide, with
its consumption going back thousands of years [6, 8–10].
Caffeine is typically consumed in the form of beverages,
such as coffee, tea, and soft drinks, but can also be found in
chocolate and in various prescription and over-the-counter
(OTC) drugs and supplements [5, 6, 9]. Depending on the
preparation, an espresso coffee can contain approximately
100 mg and a cup of tea 40–60 mg of caffeine, while larg-
er amounts can be found in energy drinks [11]. Caffeine is
also commonly found as an adulterant in illicit recreational
drugs, sometimes in concentrations high enough to cause
acute caffeine toxicity [12].

Pharmacokinetics

After oral intake, caffeine, a weak base with bioavailability
of almost 100%, is rapidly absorbed with peak concentra-
tions reached within 30–60 minutes without food [6, 7].
Due to its lipophilic nature, caffeine can readily cross cell
membranes, including the blood-brain barrier. In adults,
the volume of distribution is 0.6–0.8 L/kg and binding to
protein is low (approximately 35%) [7, 9]. Serum con-
centrations in coffee drinkers are typically in the range of
1–10 mg/l [9]. Caffeine’s metabolism is rather complex,
with more than 25 metabolites identified so far and some
cytochrome P450 enzymes (CYP) being involved only at
high concentrations [6]. Caffeine is primarily metabolised
in the liver, mainly by CYP1A2. The main metabolite after
demethylation is paraxanthine (80%); other metabolites in-
volving CYP1A2, but also CYP2E1, include theobromine
(11%) and theophylline (5%) [6, 7]. Further metabolism
by CYP1A2, as well as N-acetyltransferase, xanthine oxi-
dase or CYP3A4, leads to further metabolites that are pri-
marily excreted in the urine [6]. Due to genetic polymor-
phisms and potential interactions with other substances,
the rate of metabolism varies widely across individuals,
and the elimination half-life can range between 3 and 10
hours (usually 4–6 hours in healthy adults; prolonged in
newborn infants and in the elderly) [7, 9, 13]. In adults, less
than 5% is eliminated unchanged in the urine [6, 7], while
urinary concentrations of >12 mg/l used to be considered
doping in sports before the removal of caffeine from the
list of banned substances [14]. After oral consumption of
100 mg, caffeine is found in the milk of breastfeeding
women at concentrations of ~2–4 mg/l [15], but consump-
tion of moderate amounts during breastfeeding is consid-
ered safe [16]. Caffeine crosses the placenta, and its elimi-
nation half-life is prolonged during pregnancy [17, 18].

Pharmacodynamics

The effects of caffeine are mainly mediated by the nonse-
lective antagonism of adenosine. Caffeine in high concen-
trations inhibits phosphodiesterase, which can result in in-
creased concentrations of cyclic AMP (cAMP). This can
lead to a cAMP-related syndrome of arrhythmias, vasople-
gia, and distributive hypokalaemia due to increased Na-
K ATPase activity through β2 receptor stimulation, with
possible rebound hyperkalaemia later, because of the re-

versal of the direction of the potassium flux and rapid
plasma enrichment from the intracellular space [19–21].
Effects include central nervous system (CNS) and periph-
eral β1 and β2 receptor stimulation due to the release of
catecholamines and accumulation of the second messenger
cAMP [7, 9, 22]. Caffeine can increase the production of
nitric oxide in vascular smooth muscle cells (mediated via
cAMP), contributing to vasodilation [23], while it also in-
hibits the intracellular receptor adenylate cyclase [19].

Toxicity

Caffeine has a wide therapeutic window and is considered
safe if consumed at lower doses (≤400 mg/day in healthy
non-pregnant adults [6]) but can cause toxicities, such as
tremor, agitation, tachycardia, and nausea/vomiting at
higher doses. However, tolerance develops within a few
days of consumption, thus adverse effects, such as anxiety
and insomnia, are much more likely among non-tolerant
consumers compared to regular caffeine users [24]. Al-
though coffee can acutely increase sympathetic activation
and blood pressure in non-regular consumers [25], the ef-
fects are less evident in regular drinkers and there is cur-
rently no evidence that normal doses are associated with
an increased risk of arrhythmia [26, 27]. However, case re-
ports of coronary artery vasospasm and myocardial infarc-
tion following an acute overdose of caffeine or caffeinated
energy drinks can be found [28, 29]. Other serious symp-
toms seen during caffeine overdose include seizures, hy-
potension due to peripheral vasodilation, electrolyte dis-
turbances (most importantly hypokalaemia), and cardiac
arrhythmias [6, 7, 9]. The estimated lethal dose is approx-
imately 150–200 mg/kg based on case reports [7, 9] and
serum concentrations >80 mg/l are associated with lethal
outcomes in acute toxicity, although surviving cases with
higher concentrations, as well as rare fatal cases at lower
concentrations with comorbidities and co-used substances
as possible confounding factors, have been reported [6, 7,
9]. Treatment in cases of toxicity is mainly supportive, for
example, antiemetics for nausea, intravenous fluids for hy-
potension, benzodiazepines in cases of seizures and agi-
tation, and beta-blockers in cases of tachyarrhythmias or
refractory hypotension to counteract the β2 receptor-medi-
ated vasodilation and improve tachycardia-associated de-
creased output [6, 7, 9]. Activated charcoal can be ad-
ministered for decontamination and haemodialysis can be
considered in severe cases [7, 9, 30]. The use of intralipid
infusion has been described in a case report of near-fatal
overdose [19]. Chronic toxicity in the case of regular con-
sumption of high doses (typically 1–1.5 g/day) may pre-
sent as a combination of symptoms, such as irritability,
anxiety, palpitations, and muscle twitching, also referred
to as “caffeinism” [6, 7, 9]. Chronic high intake of cof-
fee might be associated with lower bone density among
older women [31, 32]. The abrupt termination of chron-
ic consumption can cause withdrawal symptoms, such as
headache, drowsiness, irritability and depression, starting
hours after the last consumption, peaking after 1–2 days,
and lasting approximately one week [7, 33]. After heavy
consumption during pregnancy, neonatal withdrawal syn-
drome has been described [34, 35]. Caffeine does not ap-
pear to be teratogenic when consumed in normal amounts;
however, the limitations of such analyses include the diffi-
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culty of performing standardised studies, as well as possi-
ble confounding factors for some effects [17]. In children,
caffeine can acutely enhance performance, but with regular
use, it can result in withdrawal symptoms that could impair
cognitive function during school [36, 37].

Interactions

In addition to genetic polymorphisms that can affect the
metabolic rate of caffeine (differences in clearance be-
tween “slow” and “fast” metabolisers [6]), interactions
with other substances can also influence its metabolism.
Among others, alcohol, grapefruit juice, some quinolone
antibiotics, the antidepressant fluvoxamine, the H2 recep-
tor antagonist cimetidine, and oestrogens inhibit caffeine’s
metabolism leading to longer elimination half-life, while
drugs such as rifampicin, phenytoin or omeprazole and to-
bacco smoke induce its metabolism, thus resulting in short-
er elimination half-life [6, 7, 9, 24, 38]. Smoking cessation
and thus termination of this induction can lead to high-
er serum concentrations due to reduced clearance [7, 39].
Concurrent consumption of coffee can lead to decreased
absorption of L-thyroxine, alendronate, iron, and zinc [38,
40, 41]. In addition to pharmacokinetic interactions, phar-
macodynamic interactions between caffeine and other sub-
stances are also possible, such as additive effects and po-
tential toxicity in combination with theophylline [42].

Therapeutic use

Current medical indications include the treatment of ap-
noea in premature infants and its use as an analgesic ad-
juvant [7, 13, 43]. In the context of apnoea in prematurity,
caffeine is administered intravenously with an initial load-
ing dose, followed by a maintenance dose. Although the
mechanism of ventilation improvement in this setting is
not fully understood, caffeine’s effects include antagonism
of the inhibiting respiratory effects of adenosine [43]. As
an analgesic adjuvant, caffeine is usually used for the treat-
ment of headaches or migraine in combination with anal-
gesics such as paracetamol (acetaminophen) or aspirin
[44]. Caffeine is also used for cognitive enhancement [5,
45, 46].

Several studies investigating non-genetic factors related to
the development of Parkinson’s disease have shown a re-
duced risk in association with coffee consumption [47, 48],
suggesting a potential neuroprotective effect of caffeine
[49, 50]. However, exact data on coffee consumption are
often not recorded or considered when designing and con-
ducting large clinical trials and are also difficult to moni-
tor [50, 51]. Furthermore, there are indications that these
findings differ between men and women, depending on the
use of postmenopausal hormones, with no protective effect
or even increased risk associated with the latter [52, 53].
Further reports of potential positive health effects of cof-
fee include a reduced risk of Alzheimer’s disease [54], di-
abetes mellitus type 2 (including with consumption of de-
caffeinated coffee) [38, 55], and liver cirrhosis [38, 56].
However, similar to studies investigating other potential
indications, limitations include possible confounding fac-
tors and self-reported consumption [55, 56].

Nicotine

Nicotine is the main driver of tobacco dependence. The
Nicotiana tabacum plant produces different alkaloids, with
the most abundant and major active ingredient being nico-
tine, which serves the plant as an insecticide [57]. Tobacco
leaves are processed for various products, such as ciga-
rettes, cigars, hookah, snuffing tobacco, snus or “heated
tobacco” sticks, while extracted and purified nicotine is
used for the production of, for example, nicotine replace-
ment products, e-liquids, and nicotine pouches. Although
harvesting, extraction and purification are cheaper than
the chemical synthesis of nicotine, synthetic nicotine has
recently emerged in the nicotine products market [58].
Governing bodies, such as the United States Food and
Drug Administration (FDA), initially only had the author-
ity to regulate tobacco-derived nicotine [59]. Manufactur-
ers exploited this by introducing synthetic nicotine into the
market, thus evading regulation. While the FDA closed
this loophole in 2022 [60], other governing bodies have
yet to do so [61]. Importantly, synthetic nicotine may be
chemically different from tobacco-derived nicotine. Nico-
tine can exist as the (R) or (S) enantiomer; plant-derived
nicotine overwhelmingly consists of (S)-nicotine (>99%),
while synthetic nicotine may be a 50:50 mixture of the
two enantiomers [58]. However, stereoselective synthesis
of nicotine is possible, and synthetic nicotine products can
be almost pure (S)-nicotine [62–64].

Pharmacokinetics

An average tobacco cigarette contains about 10–14 mg of
nicotine, of which 1–1.5 mg becomes systemically avail-
able during smoking [65]. Nicotine is extensively distrib-
uted to body tissues (volume of distribution of 2.6 L/kg)
and can pass the blood-brain and placental barriers [65].
Genetic influences account for 60–80% of the variability
in nicotine metabolism, whereas non-genetic and environ-
mental influences also contribute to the variation [66]. Me-
tabolism is highly dependent on CYP2A6, accounting for
~80% of nicotine’s total clearance [67] and mediating the
biotransformation of nicotine’s major primary metabolite,
cotinine. Of the nicotine, 70–80% is transformed to coti-
nine, whereas 8–10% is excreted unchanged via urine. Co-
tinine is also a substrate of CYP2A6 and is metabolised
to 3’-hydroxycotinine (3’-OH-cotinine), and 33–40% of
the total nicotine is excreted as 3’-OH-cotinine in urine
[67]. Cotinine clearance is significantly lower, and nicotine
clearance tends to be lower in Black people compared
to White people [68]. Whites and Latinos exhibit compa-
rable nicotine clearance, whereas Chinese-Americans are
reported to have lower clearance [69]. Female sex hor-
mones, specifically oestrogen, accelerate nicotine clear-
ance with higher clearance in women overall, particularly
in those using oestrogen-containing contraceptives com-
pared to those who do not, and during pregnancy compared
to postpartum [70–72]. Elderly people (>65 years) have
a 23% lower nicotine clearance compared with younger
adults [73]. Nicotine serum concentrations in smokers tend
to be consistent from day to day, as users self-titrate their
intake in order to reach desirable levels [74, 75]. However,
fast nicotine metabolism is associated with smoking more
cigarettes per day and higher dependence, leading to
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stronger cravings and lower successful nicotine cessation
[76].

Pharmacodynamics

Nicotine’s pharmacological effects are mediated through
binding to nicotinic acetylcholine (nACh) receptors, which
are present in neuromuscular junctions, autonomic ganglia,
and the brain [77]. Dependence is largely mediated by neu-
ronal nicotinic acetylcholine receptor activation in the ven-
tral tegmental area and the nucleus accumbens [78]. Nico-
tine binding leads to a release of dopamine, similar to
other drugs that cause dependence [78]. Chronic exposure
leads to neuroadaptation, which underlies nicotine depen-
dence and tolerance [79]. Withdrawal symptoms include
depression, anxiety, mood disturbances, impatience, diffi-
culty concentrating, insomnia, and restlessness [80]. These
symptoms typically start within 1–2 days of stopping nico-
tine use, peak in the first week and can last up to 3–4 weeks
[80]. However, individuals who have quit smoking contin-
ue to face a heightened risk of relapse, even after extend-
ed periods of abstinence [81]. The effects of (R)-nicotine,
which is barely present in tobacco, in humans are largely
unknown. Research in animals has shown that stereoiso-
merism of nicotine influences its disposition kinetics [82,
83] and that (R)-nicotine has lower potency at nicotine re-
ceptors [84].

Toxicity

Green tobacco sickness is a condition commonly found
in tobacco harvesters who absorb nicotine through their
skin when handling wet tobacco plants, sometimes result-
ing in acute nicotine intoxication [85]. Traditionally, nico-
tine was consumed only as part of the tobacco plant. With
the emergence of isolated nicotine in products, such as e-
cigarettes and oral nicotine pouches, the nicotine concen-
tration is no longer limited to the content in the plant, and
more highly concentrated products are available, potential-
ly posing greater risks of acute intoxication. Lethal ingest-
ed oral doses of nicotine have been estimated to be 6.5–13
mg/kg body weight [86–88]. However, based on reports
of non-fatal cases with much higher doses, these estimates
might be too low [87], while tolerance also has an influ-
ence. Mild symptoms of intoxication are mainly cholin-
ergic and include nausea, vomiting, diarrhoea, respiratory
difficulty, and initial tachycardia, followed by bradycardia
as toxicity progresses [85]. Severe intoxication can lead
to seizures, hypotension, and respiratory depression, which
can be lethal [89]. Children are especially vulnerable and
symptoms may occur after ingestion of even 1 mg of nico-
tine, with the minimum estimated lethal dose being 1 mg/
kg body weight [90]. The majority of consultations in poi-
son centres regarding e-liquid exposure concern children.
Exposure is mostly unintentional, as children are easily at-
tracted to the appealing flavourants of nicotine products
[91, 92].

Interactions

Menthol is commonly added to tobacco or e-liquids as
a flavourant for its cooling, soothing and anaesthetic ef-
fects, and is also metabolised via CYP2A6 [93]. Smokers
of mentholated cigarettes have decreased rates of nicotine

metabolism, potentially through enzyme competition [94].
Furthermore, because of its anaesthetic effects, menthol
suppresses smoke-related irritation and thus facilitates in-
halation and increases nicotine exposure [95]. Known drug
interactions that lead to decreased nicotine metabolism in-
clude those with methoxsalen, selegiline or tranyl-
cypromine [96]. Tobacco smoke induces the expression of
CYP1A1 and CYP1A2, leading to faster metabolism of
substances primarily metabolised by these enzymes, e.g.
caffeine, haloperidol, propranolol, and oestradiol [97].

Therapeutic use

Nicotine is used as a therapeutic agent in nicotine replace-
ment therapy products, helping smokers to quit by allevi-
ating craving and withdrawal symptoms. Nicotine replace-
ment therapy can be divided into short-acting (e.g. gums,
inhalers, mouth or nasal sprays) and long-lasting (patch-
es), and a combination of long- and short-acting nicotine
replacement therapy products is more effective in promot-
ing smoking cessation [98]. Nicotine replacement thera-
py products demonstrate low abuse liability, as they result
in lower peak concentrations delivered less rapidly than
cigarettes [99]. Addiction to licensed nicotine replacement
therapy is rare among never-users of tobacco [100]. How-
ever, in smokers who successfully use such products for
smoking cessation, sustained use for longer than the rec-
ommended treatment duration is common [101, 102]. Oth-
er currently approved treatment options for smoking ces-
sation include the partial nicotinic acetylcholine receptor
agonist varenicline and the norepinephrine-dopamine re-
uptake inhibitor bupropion, while the plant alkaloid cyti-
sine, which has a similar mechanism of action to vareni-
cline, is also used in some European countries [102]. Al-
though these therapeutic options exist and most smokers
would like to quit, smoking cessation rates remain low
[102].

Individuals suffering from mental illnesses, such as schiz-
ophrenia, major depression, generalised anxiety, and sub-
stance-use disorders, have higher smoking rates and higher
nicotine dependence than smokers without mental illnesses
[103]. A common explanation for this association is that
patients self-medicate their symptoms with nicotine, as
the nicotinic acetylcholine receptor is involved in both
schizophrenia and addiction, and nicotine can attenuate ex-
trapyramidal and negative symptoms, particularly anhedo-
nia [104]. Nicotine effects also include improved senso-
ry gating, which can ameliorate schizophrenic symptoms
[105]. However, the causality of this association is unclear,
i.e. whether smoking can also lead to mental illness and
whether this association is based on shared risk factors or
if the self-medication hypothesis holds true [106].

Exposure to tobacco smoke, smokeless tobacco, and even
dietary nicotine intake has been shown to be inversely as-
sociated with the risk of Parkinson’s disease [107–109]. In
a study investigating the incidence of Parkinson’s disease
in twins, the twins who smoked had a lower incidence than
their non-smoking twins [110]. These results point towards
a possible protective effect of nicotine. However, several
clinical trials investigating the effects of nicotine patches
and gums on disease progression have yielded mostly neg-
ative results [111–113]. Nicotine has also been suggested
to be an enhancer of cognitive performance in patients with
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Alzheimer’s disease. Studies have reported an inverse re-
lationship between smoking and the latter [114]; however,
when controlling for industry affiliation and study design,
smoking was found to increase the risk of Alzheimer’s dis-
ease [115]. While nicotine has been shown to improve the
pathology in animal models [116, 117], it has failed to im-
prove the memory of patients in clinical studies [118, 119].
However, positive effects on attention have been observed
[119].

Smokers are less affected by ulcerative colitis than non-
smokers or former smokers [120]. This association has
been largely attributed to the anti-inflammatory properties
of nicotine. Nicotine activates the cholinergic anti-inflam-
matory pathway by binding to a7 nicotinic acetylcholine
receptors, which regulate cytokine production through sup-
pression of nuclear factor-kB and inhibition of innate im-
mune responses, limiting potentially hazardous inflamma-
tory responses in the protective and non-toxic range [121].
Animal studies have shown that the activation of the
cholinergic pathway can protect against immune-mediated
diseases, such as acute lung injury [122], sepsis [123], viral
myocarditis [124], acute kidney injury [125] and neuroin-
flammation [126]. Activation has not been shown to cause
immunosuppression, as pro-inflammatory cytokines are re-
duced from a toxic to a healthy range [121]. Neverthe-
less, tobacco smoke contains a plethora of pro-inflamma-
tory substances, leading to various lung disorders, such as
asthma and chronic obstructive pulmonary disease [127].

Cannabis

Plants of the genus Cannabis and its main species
Cannabis sativa are cultivated for various purposes. While
the term “hemp” is used to refer to the undifferentiated
cannabis plant material, it has also come to refer to the fi-
brous plant stem, which has a wide range of industrial us-
es, including the manufacture of paper and textiles. The
use of plant parts as herbal medicines for gastrointestinal,
rheumatologic or infectious ailments can be traced back
to ancient China, where occasional mind-altering proper-
ties of the preparations were noted [128]. In the follow-
ing centuries, the psychoactive effects of selectively bred
species were utilised for ceremonial and recreational pur-
poses [129]. There have been more than 100 cannabinoids
isolated from Cannabis sativa [130], which are present
alongside other chemical compounds, such as terpenes,
flavonoids and alkaloids. The most researched cannabi-
noids are ∆9-tetrahydrocannabinol (THC), the main psy-
choactive compound, and cannabidiol (CBD). Cannabinol
(CBN) is another phytocannabinoid marketed as an over-
the-counter sleeping aid, though formal evidence of its ef-
ficacy and safety is lacking [131].

Cannabis can be consumed via different routes and the in-
ter-individual variability in pharmacokinetic profiles is ex-
tensive [132]. Smoking and vapour inhalation (e.g. via an
electronic cigarette or herb vaporiser) are the most com-
mon routes for recreational use, although oral intake is in-
creasing [133]. For therapeutic uses of THC, a spray for
oromucosal application has been approved in several coun-
tries [134]. CBD is consumed by various routes in comple-
mentary medicine, including oral, inhalational, topical and
sublingual application, and via oral intake for approved in-
dications [135].

Pharmacokinetics

The phytocannabinoids THC, CBD, and CBN are
lipophilic compounds with generally poor and highly vari-
able oral bioavailability [136]. Orally absorbed cannabi-
noids undergo extensive first-pass hepatic and intestinal
metabolism. For THC, oral bioavailability has been report-
ed to range from as low as 6% for edible cannabis products
up to 20% for standardised extracts and bioavailability can
be increased by consumption of a high-fat meal. While the
time to reach peak THC concentrations (Tmax) is approx-
imately 2 hours when taken on an empty stomach, intake
with a fatty meal can increase the Tmax up to 6–7 hours
[137]. In contrast, THC is very rapidly absorbed when
cannabis products are inhaled (Tmax 3–10 min) and exhibits
a higher bioavailability by this route (10–35%) [136]. The
absorption profile of oromucosally applied THC lies be-
tween oral or inhalational routes. It is more rapidly ab-
sorbed than after oral application, but not as quickly as
via inhalation, as some fraction of buccal THC is swal-
lowed and gets absorbed in the same way as orally applied
cannabis products [136]. Cannabinoids bind to albumin
and lipoproteins and distribute rapidly to well-perfused or-
gans, such as the brain, heart, lungs and liver. The parent
compounds and their metabolites also partition to adipose
tissue, where they accumulate after chronic use. After in-
halation, THC concentrations peak quickly (within 3–10
minutes) and then decline markedly over the next hour due
to extensive tissue distribution [138]. After a single dose,
an estimated apparent terminal half-life of 22 hours has
been reported for THC, and 31 hours for CBD [132, 139].
After chronic use, a markedly prolonged and variable ter-
minal half-life of 5–13 days was described for THC and
2–5 days for CBD, likely because of redistribution from
adipose tissue [132, 140]. Accordingly, after cessation of
chronic use, THC metabolites can sometimes be detected
for several weeks in urine [141]. As lipophilic compounds,
cannabinoids readily cross the placental barrier [142] and
can be measured in maternal milk [143].

THC and CBD undergo phase 1 metabolism by CYP en-
zymes and phase 2 metabolism mainly by glucuronidation,
and in vitro data suggest that cannabinoids may be sub-
strates of drug transporters such as P-glycoprotein (P-gp)
[132]. THC is metabolised by CYP2C9, CYP2C19 and
CYP3A4 into the psychoactive metabolite 11-OH-THC,
which gets further transformed into the inactive form
11-COOH-THC. CBD is primarily a substrate of
CYP2C19 and CYP3A4, with minor contributions of
CYP1A1, CYP1A2, CYP2C9 and CYP2D6; data on the
pharmacologic activity of resulting metabolites are sparse
[136]. Polymorphisms in the genes of the aforementioned
metabolising enzymes and drug transporters have been
linked to pharmacokinetic alterations in a few studies. For
instance, poor metabolisers of CYP2C9 tend to have high-
er THC and lower metabolite exposure [144].

Pharmacodynamics

Cannabinoids – both naturally occurring and synthetic –
exert their effects mainly by modulating the endocannabi-
noid system, which plays pleiotropic roles in maintaining
local homeostasis in multiple organs and comprises several
receptors (cannabinoid receptors CB1 and CB2 are the
most extensively studied), endogenous ligands (endo-
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cannabinoids) and corresponding metabolising enzymes.
THC is a high-affinity partial agonist at the G-protein-
coupled receptors CB1 and CB2. This distinguishes this
phytocannabinoid from synthetic cannabinoids, also called
synthetic cannabinoid receptor agonists, which are often
full agonists with even higher affinity to these receptors,
resulting in increased toxicity [145, 146]. CB1 agonism
mediates the most extensively studied effects of THC, in-
cluding increased appetite, reduced spasticity in certain
neurologic conditions, and a wide range of neuropsychi-
atric manifestations [128]. CBD, in contrast, is a low-
affinity negative allosteric modulator of CB1 and CB2
and seemingly exerts mostly indirect effects on the en-
docannabinoid system, for instance, by influencing endo-
cannabinoid transport via fatty acid-binding proteins. Mul-
tiple non-cannabinoid receptors (e.g. serotonin receptors,
transient receptor potential channels and GABAA recep-
tors) are hypothesised to contribute to the wide range of
purported immunomodulatory, antioxidant, neuroprotec-
tive and psychotropic effects of CBD [147]. A shared ef-
fect of THC, CBD and CBN is sedation. However, while
CBD does not seem to produce impairing psychoactive
or significant cardiac effects, THC can produce marked
neuropsychiatric symptoms and tachycardia resulting from
stimulation of CB1 receptors in the brain and heart, re-
spectively [136]. Genetic variations affecting cannabinoid
receptors and other molecular targets of cannabis are as-
sociated with pharmacodynamic changes and the risk of
developing a cannabis use disorder [144]. However, there
is only limited data on the clinical relevance and therapeu-
tic consequences of cannabis pharmacogenomics [144].

Toxicity

In contrast to synthetic cannabinoids, cannabis products
are generally considered to be of low acute toxicity [148].
Children and older patients are, however, more at risk
of developing severe symptoms after the consumption of
cannabis [149, 150]. A lethal dose in humans has not been
established, and the risk of death is considered very low
in the general population, but might be elevated in specific
contexts, such as the presence of cardiac comorbidities or
physical trauma occurring during intoxication [151]. Most
cannabis-related toxic effects are an extension of CB1 ago-
nism by THC, while health risks associated with CBD are
considered negligible [152]. Neuropsychiatric effects, such
as euphoria, alterations of perception, psychosis, paranoia
and anxiety, are frequently described after the use or abuse
of cannabis with high THC content. THC can also cause
orthostatic hypotension and precipitate acute cardiovascu-
lar events [153]. Cannabis-induced impairments of cogni-
tion and judgement, as well as psychomotor deficits, in-
crease the risk of accidents. After inhalation of a typical
single dose of THC-containing cannabis, neuropsychiatric
symptoms are typically greatest in the first hour and grad-
ually decline over several hours, with significant driving
impairment persisting for 5–7 hours. After oral consump-
tion, a markedly delayed onset of effects and a longer-
lasting impairment are expected [154]. Tachycardia may
additively increase the cardiotoxic risk of other drugs of
abuse, such as stimulants. The treatment of acute cannabis
intoxication is supportive. Observation in a quiet environ-
ment and avoiding unnecessary stimulation is sufficient in

most cases; persistent agitation can be treated with benzo-
diazepines [149].

Chronic cannabis use has been associated with a range
of long-term adverse health effects. If marijuana products
are consumed by combustion, similar health concerns as
those associated with tobacco products have been raised.
Cannabis is an addictive substance and cannabis use dis-
order, as well as cannabis withdrawal syndrome, are well
recognised [152]. The Diagnostic and Statistical Manual of
Mental Disorders (DSM–5) has defined a cannabis use dis-
order as a problematic pattern of cannabis use leading to
clinically significant impairment or distress, characterised
by several criteria reflecting impaired control, psychoso-
cial distress, risky behaviour, and adaptation [155]. A link
with other psychiatric disorders is somewhat more contro-
versial. Associations between cannabis consumption and
increased risks of schizophrenia, depression and anxiety
have been described, but the underlying causal relationship
between these observations is still debated [152, 156]. In
the context of heavy cannabis use, a cyclic vomiting dis-
order termed “cannabis hyperemesis syndrome” can occur.
This is thought to result from dysregulation of the endo-
cannabinoid system, possibly involving nociceptive path-
ways via the transient receptor potential vanilloid 1 (TR-
PV1) receptors. The observation that hot showers and topi-
cal capsaicin, which both activate TRPV1, alleviate symp-
toms in some users, supports this hypothesis, but other
mechanisms likely contribute. Some antipsychotics, such
as haloperidol or droperidol, are thought to be more ef-
fective than more typical antiemetics in the symptomatic
management of this disorder; continued abstinence from
cannabis products is, however, the only definitive treat-
ment [157].

As the endocannabinoid system is thought to play an im-
portant role in brain development and studies suggest detri-
mental effects of psychoactive cannabinoids on neural con-
nectivity in children, consumption of cannabis is not rec-
ommended during pregnancy and lactation [158]. For sim-
ilar reasons, the consumption of cannabis products by chil-
dren and adolescents should also be discouraged. Of partic-
ular concern for adolescents is the increased incidence of
psychiatric disease, especially psychosis, with regular use
of high-potency THC products [159–161].

Interactions

Data on interactions between cannabinoids and pharma-
ceuticals are sparse and consist primarily of in vitro stud-
ies, case reports, and theoretical considerations, with very
few clinical trials available to reliably assess the clinical
relevance [162]. Similar to tobacco, compounds in
cannabis smoke induce CYP1A1 and CYP1A2, and the
combined use of tobacco and cannabis products produces
an additive inductive effect. Regular inhalation of cannabis
smoke can lead, among others, to reduced exposure to the
antipsychotics clozapine, olanzapine, and chlorpromazine,
some antidepressants, such as duloxetine and agomelatine,
and the methylxanthines caffeine and theophylline [96].
There are several reports of an increase in the anticoagu-
lant effect of warfarin in combination with cannabis use,
which is thought to be mediated by inhibition of CYP2C9
[163–165]. Cannabis consumption is associated with an
increase in tacrolimus levels, possibly because of inhibi-
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tion of P-glycoprotein and/or CYP3A4 by cannabinoids
[162]. The latter mechanism was also proposed as a pos-
sible explanation for increased buprenorphine concentra-
tions noted in consumers of cannabis in an observational
study [166]. Several clinical trials reported an increase in
clobazam levels when the benzodiazepine was combined
with CBD, possibly due to CYP2C19 inhibition by the
cannabinoid [162]. Conversely, the potent CYP3A4 in-
hibitor ketoconazole has been shown to increase cannabi-
noid exposure, while the CYP-inductor rifampicin had the
opposite effect [167].

Therapeutic use

While the non-prescription use of phytocannabinoids is
widespread and encompasses the recreational use of
cannabis (with a varying legal landscape even within the
same country, e.g. the US) and the use of CBD products
as herbal supplements (for example, self-medication as a
sleep aid or management of pain and anxiety), there are
only a few approved medical indications for cannabinoids,
with regional variations. For instance, in several Euro-
pean countries, a THC-containing cannabis mouth spray
can be prescribed to relieve refractory spasticity in multi-
ple sclerosis patients, whereas in the US, the THC/Δ9-THC
analogues nabilone and dronabinol are approved for
chemotherapy-induced nausea and vomiting resistant to
conventional antiemetics, with dronabinol being addition-
ally indicated for anorexia associated with weight loss in
patients with acquired immunodeficiency syndrome
(AIDS) [152]. CBD is approved for the treatment of severe
forms of epilepsy associated with Lennox-Gastaut syn-
drome, Dravet syndrome, and tuberous sclerosis [147].
As an add-on therapy for treatment-resistant epilepsy in
general, CBD reduced the occurrence of seizures by 50%
or more, with a number needed to treat of 8 [168]. The
cannabinoid exhibited a favourable safety profile, charac-
terised mainly by mild to moderate adverse events, such as
drowsiness, ataxia and diarrhoea. There have been reports
of transaminase elevations leading to cessation of CBD
therapy and the combination with other antiepileptic drugs,
such as valproate, may increase the risk of hepatotoxicity
[169].

Cannabinoids, mainly THC and CBD, are being investigat-
ed for the treatment of a myriad of other conditions. THC
has been proposed as a treatment for chronic pain, glauco-
ma and some psychiatric diseases, such as Tourette’s syn-
drome and insomnia, but robust evidence of efficacy and
safety for most off-label indications is lacking. Cannabis
for chronic pain has garnered much interest [2], but it is
unclear if the analgesic benefits outweigh the increased
risk of adverse effects [170]. Products with a high THC-
to-CBD ratio appear to be associated with short-term im-
provements in pain severity at the cost of frequent occur-
rences of sedation and dizziness [171]. Similarly, since the
evidence of benefit in other off-label indications is gener-
ally low quality or lacking, whereas neuropsychiatric ad-
verse effects are well described, doubts about the benefit-
risk ratio of cannabis for the treatment of these conditions
have been raised [152].

After noting that CBD counteracted some THC-associated
psychotic symptoms when co-administered, extensive re-
search has been conducted into the antipsychotic and an-

tianxiety effects of CBD. While preliminary evidence is
encouraging, with one study suggesting similar efficacy
and superior safety of CBD compared to amisulpride for
the treatment of schizophrenia [172], much uncertainty re-
mains about optimal dosing and a place in therapy of this
cannabinoid [173]. Other active areas of research are the
potential uses of CBD in the treatment of neurodegenera-
tive diseases and inflammatory bowel disease [152].

Psilocybin

Psilocybin (4-phosphoryloxy-N,N-dimethyltryptamine) is
a naturally occurring psychedelic agent found in many
species of mushrooms of the genus Psilocybe, such as
Psilocybe cubensis and Psilocybe mexicana [174, 175].
There has been renewed interest in the use of psilocybin
for the treatment of various psychiatric disorders and psy-
choactive mushrooms have been used for recreational,
spiritual and ethnomedical purposes for over 1000 years
[174, 175]. Psilocybin and its active metabolite psilocin
(4-hydroxy-N,N-dimethyltryptamine, 4-HO-DMT) were
first isolated, identified and synthesised in the late 1950s
by the Swiss chemist Albert Hofmann [176]. In the 1960s,
tablets containing 2 mg psilocybin were distributed by
Sandoz Pharmaceuticals under the trade name Indocybin™

and were used as an adjunct to psychotherapy and for psy-
chiatric research. However, the increasing popularity of
recreational psychedelic use led to its classification as a
Schedule I drug in 1970 in the US, and human research
with psilocybin came to a halt until the 1990s. Neverthe-
less, recreational use of psilocybin-containing products has
continued and has increased lately in the US [177, 178].

Psilocybin is typically used orally. For ethnomedical or
recreational use, usually fresh or dried mushrooms or truf-
fles (sclerotia) are consumed, but psilocybin can also be
chemically synthesised and used as a pure substance as
in the clinical trials investigating its therapeutic potential
[174–176, 179]. Self-reports indicate that for recreational
use, dosages ranging from 10 to 50 g of fresh mushrooms
or 1 to 5 g of dried mushrooms are ingested [180] with
an average psilocybin content of around 10 mg psilocybin
(1%) per gram of dried Psilocybe cubensis [181]. There is
considerable variability in psilocybin and psilocin content
between different mushroom species and also within the
same species according to the season, as well as the ori-
gin or size of the mushroom [180, 182–185]. Furthermore,
psilocybe mushrooms, in addition to psychoactive com-
pounds, including psilocybin and psilocin, may also con-
tain baeocystin (4-phosphoryloxy-N-methyltryptamine)
and norbaeocystin (4-phosphoryloxytryptamine) along
with other potential psychoactive constituents (sum-
marised in [179, 186]).

Pharmacokinetics

Psilocybin is a prodrug that is rapidly dephosphorylated
to its active metabolite psilocin after oral ingestion by
intestinal alkaline phosphates and nonspecific esterases
[187–192]. Psilocin is subject to extensive metabolism,
and around 80% is metabolised via glucuronidation
through UDP-glucuronosyltransferase (UGT)1A9 in the
liver and UGT1A10 in the small intestine, resulting in
the formation of the inactive psilocin-O-glucuronide [186,
190, 193–196]. Additionally, psilocin undergoes deamina-
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tion and oxidation by liver aldehyde dehydrogenase and
monoamine oxidase (MAO), leading to the formation of
the inactive 4-hydroxyindole-3-acetic acid (4-HIAA) [194,
197]. In a study of healthy volunteers receiving 1 mg
psilocybin base intravenously and 0.224 mg/kg psilocybin
base orally, the estimated mean systemic availability of
psilocin was 52.7 ± 20% of the oral psilocybin dose [187].
Administration of oral psilocybin displays dose-propor-
tional changes in plasma concentrations of unconjugated
psilocin, psilocin glucuronide, and 4-HIAA with dose-de-
pendent urinary recovery [190]. Following oral psilocybin
administration, psilocin is detected in plasma within 20–40
minutes, and maximal plasma psilocin concentrations are
reached within 2–3 hours [190, 197–199]. Psilocin and
its metabolites demonstrate first-order elimination kinetics
with a plasma half-life of psilocin ranging between 1.5
and 3 hours after oral ingestion [187, 190, 194, 198, 199].
Approximately 55% of an orally administered psilocybin
dose is excreted through the kidneys within 24 hours in
the form of 4-HIAA, unconjugated psilocin, or psilocin-
O-glucuronide [190]. Only a small amount of psilocin is
eliminated unchanged in the urine (1.5–3.5%) [190, 194,
198] indicating that no dose adjustment is needed in pa-
tients with mild to moderate renal impairment. In studies
with healthy volunteers, plasma concentration changes of
psilocin over time closely mirrored subjective effect-time
curves within subjects, and no acute tolerance was ob-
served [190]. CYP2D6 does not appear to significantly
contribute to the metabolism of psilocin [196]; however,
only limited pharmacogenetic information is available.

Pharmacodynamics

The subjective effects of psilocybin are primarily mediated
by agonism at the serotonin 5-hydroxytryptamine-2A
(5-HT2A) receptor [200]. However, psilocin also binds to
other serotonergic receptors (5-HT1A, 5-HT1D and 5-HT2C)
and acts as a serotonin transporter (SERT) inhibitor, but
unlike lysergic acid diethylamide (LSD), dopamine recep-
tors seem to be less or not involved [186, 192, 197, 201].
The threshold dose for subjective effects is 2 (range: 1–5)
mg [197, 202, 203]. Oral doses of 15–25 mg psilocybin can
be considered intermediate doses, whereas oral doses of
30–40 mg psilocybin are considered high [190, 197, 199,
203, 204]. Subjective and autonomic effects are dose-de-
pendent, and psilocybin at moderate to high doses induces
pronounced alterations of waking consciousness, including
altered perception of time and space, visual (pseudo)hal-
lucinations (recognised by the person experiencing it as
being subjective and unreal, in contrast to “true” halluci-
nations, which are considered “real” by the person), audio-
visual synaesthesia, experiences of unity, mostly positively
experienced derealisation and depersonalisation phenome-
na, and mystical-type experiences but also ego dissolution,
and anxiety [187, 197, 199, 202–204]. Typically, effects
following oral ingestion of psilocybin start after around
20–50 minutes and peak subjective effects are reached
around 1.5–2 hours after ingestion [190, 199, 202, 204],
aligning with the peak maximal observed psilocin plasma
concentrations [190]. The effect intensity and duration are
dose-dependent (5.5–6.5 hours for moderate to high doses
of oral psilocybin) [190, 197, 199, 202, 204].

Toxicity

Overall, psilocybin exhibits a relatively favourable somatic
safety profile [197, 199, 204–206] and shows low abuse
liability and no dependence syndrome [207]. For rodents,
an LD50 of 280–285 mg/kg psilocybin was reported [208].
Psilocybin produces dose-dependent but moderate and
transient increases in blood pressure, heart rate and body
temperature and increases pupil size [199, 202, 204, 206,
209]. Very high doses may increase the QT interval, in par-
ticular when combined with drugs prolonging the QT time,
such as some antidepressants [210, 211]. However, no ef-
fects by electrocardiogram were found in a clinical study
using doses in the range of 45–315 µg/kg body weight over
24 hours of continuous recording [202], and one clinical
study did not find significant QTc interval prolongation
during the peak response to 25 mg psilocybin in healthy
volunteers [210]. Chronic administration (“microdosing”,
i.e. the practice of ingesting sub-threshold doses over sev-
eral weeks with the aim of achieving potential therapeutic
benefits without hallucinogenic or cognitive impairment
effects) of psilocybin over a prolonged time (months) may
theoretically increase the risk of cardiac valve thickening
via 5-HT2B receptor stimulation [212, 213]. Frequently re-
ported side effects, also occurring more frequently at high-
er dosages, include fatigue, lack of concentration and en-
ergy, nausea, headache, inner tension, impaired balance,
loss of appetite, and dry mouth [199, 204, 209]. Safety
concerns relate to psychological rather than physiologi-
cal risks [205, 209]. Psilocybin use poses a risk of psy-
chological distress, including fear, anxiety, paranoia and
dysphoria, and is, in rare cases, associated with psychosis
and hallucinogen persisting perception disorder (HPPD),
while fatal accidents and suicide have infrequently been
described [179, 180, 205, 214, 215]. Although treatment is
supportive, it has been repeatedly shown that pretreatment
with the 5-HT2A receptor antagonist ketanserin blocks the
effects of psilocybin [200, 216–218] and ketanserin was
able to reverse the effects induced by LSD [219]. In mice,
no evidence of mutagenicity was observed [220]. In ro-
dents, psilocin has been shown to cross the placental bar-
rier [221], but there are no human reports or data on out-
comes following psilocybin use during pregnancy.

Interactions

Previous reports imply potential pharmacodynamic inter-
actions with psilocybin and various antidepressants or
mood stabilisers, mainly drugs that affect serotonergic neu-
rotransmission (summarised in [222–224]). However, few
data from controlled clinical trials are available. Case re-
ports and non-controlled studies have indicated a generally
decreased subjective effect of psychedelics in people un-
dergoing chronic treatment with serotonin reuptake in-
hibitors (SSRIs) and MAO inhibitors [225–229], whereas
an increased subjective and physical response has been
reported with chronic use of tricyclic antidepressants or
lithium [227]. However, a recent double-blind, placebo-
controlled crossover trial in healthy participants did not ob-
serve any effect of a 2-week pretreatment with the SSRI
escitalopram on the psilocybin-induced positive mood or
mind-altering effects but rather a decrease in adverse drug
effects, including anxiety [210]. Pretreatment with esc-
italopram decreased the psilocybin-induced increase in
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blood pressure, and no additional increase in body temper-
ature was noted, suggesting no additional serotonergic tox-
icity [210]. A recent clinical trial evaluating psilocybin in
patients suffering from treatment-resistant depression with
ongoing SSRI treatment (mean ± SD duration 14.7 ± 13.2
months) also showed good treatment results, and overall,
the combination was well tolerated [3].

In controlled clinical trials, pretreatment with the 5-HT2A

antagonist ketanserin decreases the effects of psilocybin in
a dose-dependent manner [200, 216–218]. Similarly, other
drugs acting as 5-HT2A antagonists, including the antipsy-
chotics risperidone and chlorpromazine, which both also
act as antagonists at the dopamine D2 receptor, significant-
ly attenuated various facets of psilocybin-induced alter-
ations of consciousness in clinical studies [200, 230]. Inter-
estingly, pretreatment with the dopamine D2 receptor an-
tagonist haloperidol decreased positively experienced de-
realisation and depersonalisation phenomena but increased
anxious ego dissolution, suggesting that classic neurolep-
tics might enhance some psilocybin-induced psy-
chotomimetic symptoms [200]. Additionally, ongoing
treatment with a 5-HT1A antagonist might also decrease
psilocybin-induced effects, including perceptual alteration,
as has been observed following pretreatment with bus-
pirone [231]. Anecdotal data suggest an increased risk of
seizures when psychedelics including psilocybin are used
with lithium, but not when co-administered with lamotrig-
ine [222].

Therapeutic use

The use of psilocybin is currently being investigated in
the treatment of several psychiatric disorders including de-
pression (e.g. [3, 232]), (existential) anxiety (e.g. [4, 233,
234]), anorexia nervosa [235], posttraumatic stress disor-
der (PTSD) (e.g. [236]), and substance-use disorder (e.g.
[237, 238]) but also in the treatment of some neurological
disorders, including migraine and cluster headaches [239,
240]. Due to promising preliminary results, psilocybin was
granted a breakthrough therapy designation by the FDA for
treatment-resistant depression in 2018 and major depres-
sive disorder in 2019 [241].

Conclusions

While the therapeutic potential of caffeine, nicotine,
cannabis, and psilocybin is not yet fully recognised, ongo-
ing research is exploring potential new applications. Each
substance exhibits a generally favourable safety profile,
and overdose lethality is low. However, the neuropsychi-
atric risks associated with the consumption of cannabis and
psilocybin should be taken into consideration, as well as
the detrimental health effects of smoke exposure and de-
pendence liability related to nicotine use, to facilitate a bal-
anced understanding of both benefits and risks.
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