

Review article: Biomedical intelligence | Published 01 July 2025 | doi:https://doi.org/10.57187/s.4346 Cite this as: Swiss Med Wkly. 2025;155:4346

Caffeine, nicotine, cannabis, and psilocybin: Pharmacology, toxicology, and potential therapeutic uses of four naturally occurring psychoactive substances

Samuel E. Christenab, Elias Bekkaa, Yasmin Schmidc, Neal L. Benowitzd, Evangelia Liakonia

- ^a Clinical Pharmacology and Toxicology, Department of General Internal Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- ^b Graduate School for Health Sciences, University of Bern, Bern, Switzerland
- ^c Clinical Pharmacology and Toxicology, Department of Biomedicine and Department of Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland
- d Department of Medicine, University of California at San Francisco, San Francisco, CA, USA

Summary

Psychoactive substances are compounds that can influence perception, consciousness, cognition, and emotions. The psychoactive substances caffeine, nicotine, cannabis, and psilocybin all originate from natural sources and can be used without complex processing or synthesis. Their natural availability has contributed to a long-standing history of human use and cultural significance. Caffeine and nicotine are freely available and commonly used as everyday stimulants, whereas psilocybin is more strictly regulated and cannabis has been legalised in some countries and regions. Some of these substances have been intensively studied, and their pharmacological and toxicological properties are well known, but ongoing research continues to investigate their therapeutic use for specific diseases and disorders. This narrative review aims to provide an overview of the pharmacology and toxicology of these four naturally occurring psychoactive substances, including a summary of the currently available evidence on their therapeutic potential, health benefits, and associated risks.

Introduction

Psychoactive substances exert their effects on the central nervous system, influencing perception, mood, emotions,

ABBREVIATIONS

5-HT: serotonin cyclic AMP

CB: cannabinoid receptor

CBD: cannabidiol

CBN: cannabinol

CYP: cytochrome P450 enzymes
LSD: lysergic acid diethylamide
MAO: monoamine oxidase
THC: A9-tetrahydrocannabinol

TRPV1: transient receptor potential vanilloid 1

Evangelia Liakoni, MD Clinical Pharmacology and Toxicology Inselspital Bern University Hospital CH-3010 Bern evangelia.liakoni[at]insel.ch consciousness, cognition, and behaviour [1]. These substances fall broadly into two categories: synthetic compounds and those derived from natural sources. While naturally occurring substances are sometimes viewed as "healthier" by users, the origin generally does not influence the toxicological properties. Caffeine, nicotine, cannabis, and psilocybin are all naturally occurring psychoactive substances and have long-standing sociocultural significance. However, their regulatory frameworks vary considerably, from caffeine and nicotine being readily available and integrated into many daily routines to the more stringent regulations surrounding cannabis and psilocybin.

Nicotine, primarily found in tobacco, has been intensely studied because of its strong dependence liability and the deleterious effects associated with tobacco smoking. Caffeine is a global mainstay of daily routines because of its productivity-enhancing and attention-increasing effects. Cannabis has recently garnered heightened attention because of its potential beneficial effects and its evolving legal status [2]. Similarly, psilocybin has sparked a lot of interest as a potential therapeutic agent in challenging-totreat conditions like depression and anxiety disorders [3, 4]. All these substances – nicotine, caffeine, cannabis and psilocybin – have a generally favourable safety profile, increasing their attractiveness as potential therapeutic options for specific conditions.

This narrative review aims to provide an overview of the current understanding and available data on four selected natural psychoactive substances (two commonly used in everyday life, i.e. caffeine and nicotine, and two with varying regional regulations, i.e. cannabis and psilocybin) that have gained increasing interest because of their potential therapeutic uses in recent years. We highlight current therapeutic applications and discuss evidence pointing towards potential novel uses.

Caffeine

Caffeine, or 1,3,7-trimethylxanthine, is a naturally occurring alkaloid found in the beans of, for example, the Arabica coffee plant and more than 60 other plants [5–7]. It is the most commonly used psychostimulant worldwide, with its consumption going back thousands of years [6, 8–10]. Caffeine is typically consumed in the form of beverages, such as coffee, tea, and soft drinks, but can also be found in chocolate and in various prescription and over-the-counter (OTC) drugs and supplements [5, 6, 9]. Depending on the preparation, an espresso coffee can contain approximately 100 mg and a cup of tea 40–60 mg of caffeine, while larger amounts can be found in energy drinks [11]. Caffeine is also commonly found as an adulterant in illicit recreational drugs, sometimes in concentrations high enough to cause acute caffeine toxicity [12].

Pharmacokinetics

After oral intake, caffeine, a weak base with bioavailability of almost 100%, is rapidly absorbed with peak concentrations reached within 30-60 minutes without food [6, 7]. Due to its lipophilic nature, caffeine can readily cross cell membranes, including the blood-brain barrier. In adults, the volume of distribution is 0.6-0.8 L/kg and binding to protein is low (approximately 35%) [7, 9]. Serum concentrations in coffee drinkers are typically in the range of 1-10 mg/l [9]. Caffeine's metabolism is rather complex, with more than 25 metabolites identified so far and some cytochrome P450 enzymes (CYP) being involved only at high concentrations [6]. Caffeine is primarily metabolised in the liver, mainly by CYP1A2. The main metabolite after demethylation is paraxanthine (80%); other metabolites involving CYP1A2, but also CYP2E1, include theobromine (11%) and theophylline (5%) [6, 7]. Further metabolism by CYP1A2, as well as N-acetyltransferase, xanthine oxidase or CYP3A4, leads to further metabolites that are primarily excreted in the urine [6]. Due to genetic polymorphisms and potential interactions with other substances, the rate of metabolism varies widely across individuals, and the elimination half-life can range between 3 and 10 hours (usually 4-6 hours in healthy adults; prolonged in newborn infants and in the elderly) [7, 9, 13]. In adults, less than 5% is eliminated unchanged in the urine [6, 7], while urinary concentrations of >12 mg/l used to be considered doping in sports before the removal of caffeine from the list of banned substances [14]. After oral consumption of 100 mg, caffeine is found in the milk of breastfeeding women at concentrations of ~2-4 mg/l [15], but consumption of moderate amounts during breastfeeding is considered safe [16]. Caffeine crosses the placenta, and its elimination half-life is prolonged during pregnancy [17, 18].

Pharmacodynamics

The effects of caffeine are mainly mediated by the nonselective antagonism of adenosine. Caffeine in high concentrations inhibits phosphodiesterase, which can result in increased concentrations of cyclic AMP (cAMP). This can lead to a cAMP-related syndrome of arrhythmias, vasoplegia, and distributive hypokalaemia due to increased Na-K ATPase activity through β2 receptor stimulation, with possible rebound hyperkalaemia later, because of the re-

versal of the direction of the potassium flux and rapid plasma enrichment from the intracellular space [19–21]. Effects include central nervous system (CNS) and peripheral $\beta 1$ and $\beta 2$ receptor stimulation due to the release of catecholamines and accumulation of the second messenger cAMP [7, 9, 22]. Caffeine can increase the production of nitric oxide in vascular smooth muscle cells (mediated via cAMP), contributing to vasodilation [23], while it also inhibits the intracellular receptor adenylate cyclase [19].

Toxicity

Caffeine has a wide therapeutic window and is considered safe if consumed at lower doses (≤400 mg/day in healthy non-pregnant adults [6]) but can cause toxicities, such as tremor, agitation, tachycardia, and nausea/vomiting at higher doses. However, tolerance develops within a few days of consumption, thus adverse effects, such as anxiety and insomnia, are much more likely among non-tolerant consumers compared to regular caffeine users [24]. Although coffee can acutely increase sympathetic activation and blood pressure in non-regular consumers [25], the effects are less evident in regular drinkers and there is currently no evidence that normal doses are associated with an increased risk of arrhythmia [26, 27]. However, case reports of coronary artery vasospasm and myocardial infarction following an acute overdose of caffeine or caffeinated energy drinks can be found [28, 29]. Other serious symptoms seen during caffeine overdose include seizures, hypotension due to peripheral vasodilation, electrolyte disturbances (most importantly hypokalaemia), and cardiac arrhythmias [6, 7, 9]. The estimated lethal dose is approximately 150-200 mg/kg based on case reports [7, 9] and serum concentrations >80 mg/l are associated with lethal outcomes in acute toxicity, although surviving cases with higher concentrations, as well as rare fatal cases at lower concentrations with comorbidities and co-used substances as possible confounding factors, have been reported [6, 7, 9]. Treatment in cases of toxicity is mainly supportive, for example, antiemetics for nausea, intravenous fluids for hypotension, benzodiazepines in cases of seizures and agitation, and beta-blockers in cases of tachyarrhythmias or refractory hypotension to counteract the β2 receptor-mediated vasodilation and improve tachycardia-associated decreased output [6, 7, 9]. Activated charcoal can be administered for decontamination and haemodialysis can be considered in severe cases [7, 9, 30]. The use of intralipid infusion has been described in a case report of near-fatal overdose [19]. Chronic toxicity in the case of regular consumption of high doses (typically 1-1.5 g/day) may present as a combination of symptoms, such as irritability, anxiety, palpitations, and muscle twitching, also referred to as "caffeinism" [6, 7, 9]. Chronic high intake of coffee might be associated with lower bone density among older women [31, 32]. The abrupt termination of chronic consumption can cause withdrawal symptoms, such as headache, drowsiness, irritability and depression, starting hours after the last consumption, peaking after 1-2 days, and lasting approximately one week [7, 33]. After heavy consumption during pregnancy, neonatal withdrawal syndrome has been described [34, 35]. Caffeine does not appear to be teratogenic when consumed in normal amounts; however, the limitations of such analyses include the difficulty of performing standardised studies, as well as possible confounding factors for some effects [17]. In children, caffeine can acutely enhance performance, but with regular use, it can result in withdrawal symptoms that could impair cognitive function during school [36, 37].

Interactions

In addition to genetic polymorphisms that can affect the metabolic rate of caffeine (differences in clearance between "slow" and "fast" metabolisers [6]), interactions with other substances can also influence its metabolism. Among others, alcohol, grapefruit juice, some quinolone antibiotics, the antidepressant fluvoxamine, the H2 receptor antagonist cimetidine, and oestrogens inhibit caffeine's metabolism leading to longer elimination half-life, while drugs such as rifampicin, phenytoin or omeprazole and tobacco smoke induce its metabolism, thus resulting in shorter elimination half-life [6, 7, 9, 24, 38]. Smoking cessation and thus termination of this induction can lead to higher serum concentrations due to reduced clearance [7, 39]. Concurrent consumption of coffee can lead to decreased absorption of L-thyroxine, alendronate, iron, and zinc [38, 40, 41]. In addition to pharmacokinetic interactions, pharmacodynamic interactions between caffeine and other substances are also possible, such as additive effects and potential toxicity in combination with theophylline [42].

Therapeutic use

Current medical indications include the treatment of apnoea in premature infants and its use as an analgesic adjuvant [7, 13, 43]. In the context of apnoea in prematurity, caffeine is administered intravenously with an initial loading dose, followed by a maintenance dose. Although the mechanism of ventilation improvement in this setting is not fully understood, caffeine's effects include antagonism of the inhibiting respiratory effects of adenosine [43]. As an analgesic adjuvant, caffeine is usually used for the treatment of headaches or migraine in combination with analgesics such as paracetamol (acetaminophen) or aspirin [44]. Caffeine is also used for cognitive enhancement [5, 45, 46].

Several studies investigating non-genetic factors related to the development of Parkinson's disease have shown a reduced risk in association with coffee consumption [47, 48], suggesting a potential neuroprotective effect of caffeine [49, 50]. However, exact data on coffee consumption are often not recorded or considered when designing and conducting large clinical trials and are also difficult to monitor [50, 51]. Furthermore, there are indications that these findings differ between men and women, depending on the use of postmenopausal hormones, with no protective effect or even increased risk associated with the latter [52, 53]. Further reports of potential positive health effects of coffee include a reduced risk of Alzheimer's disease [54], diabetes mellitus type 2 (including with consumption of decaffeinated coffee) [38, 55], and liver cirrhosis [38, 56]. However, similar to studies investigating other potential indications, limitations include possible confounding factors and self-reported consumption [55, 56].

Nicotine

Nicotine is the main driver of tobacco dependence. The Nicotiana tabacum plant produces different alkaloids, with the most abundant and major active ingredient being nicotine, which serves the plant as an insecticide [57]. Tobacco leaves are processed for various products, such as cigarettes, cigars, hookah, snuffing tobacco, snus or "heated tobacco" sticks, while extracted and purified nicotine is used for the production of, for example, nicotine replacement products, e-liquids, and nicotine pouches. Although harvesting, extraction and purification are cheaper than the chemical synthesis of nicotine, synthetic nicotine has recently emerged in the nicotine products market [58]. Governing bodies, such as the United States Food and Drug Administration (FDA), initially only had the authority to regulate tobacco-derived nicotine [59]. Manufacturers exploited this by introducing synthetic nicotine into the market, thus evading regulation. While the FDA closed this loophole in 2022 [60], other governing bodies have yet to do so [61]. Importantly, synthetic nicotine may be chemically different from tobacco-derived nicotine. Nicotine can exist as the (R) or (S) enantiomer; plant-derived nicotine overwhelmingly consists of (S)-nicotine (>99%), while synthetic nicotine may be a 50:50 mixture of the two enantiomers [58]. However, stereoselective synthesis of nicotine is possible, and synthetic nicotine products can be almost pure (S)-nicotine [62–64].

Pharmacokinetics

An average tobacco cigarette contains about 10-14 mg of nicotine, of which 1-1.5 mg becomes systemically available during smoking [65]. Nicotine is extensively distributed to body tissues (volume of distribution of 2.6 L/kg) and can pass the blood-brain and placental barriers [65]. Genetic influences account for 60-80% of the variability in nicotine metabolism, whereas non-genetic and environmental influences also contribute to the variation [66]. Metabolism is highly dependent on CYP2A6, accounting for ~80% of nicotine's total clearance [67] and mediating the biotransformation of nicotine's major primary metabolite, cotinine. Of the nicotine, 70-80% is transformed to cotinine, whereas 8-10% is excreted unchanged via urine. Cotinine is also a substrate of CYP2A6 and is metabolised to 3'-hydroxycotinine (3'-OH-cotinine), and 33-40% of the total nicotine is excreted as 3'-OH-cotinine in urine [67]. Cotinine clearance is significantly lower, and nicotine clearance tends to be lower in Black people compared to White people [68]. Whites and Latinos exhibit comparable nicotine clearance, whereas Chinese-Americans are reported to have lower clearance [69]. Female sex hormones, specifically oestrogen, accelerate nicotine clearance with higher clearance in women overall, particularly in those using oestrogen-containing contraceptives compared to those who do not, and during pregnancy compared to postpartum [70-72]. Elderly people (>65 years) have a 23% lower nicotine clearance compared with younger adults [73]. Nicotine serum concentrations in smokers tend to be consistent from day to day, as users self-titrate their intake in order to reach desirable levels [74, 75]. However, fast nicotine metabolism is associated with smoking more cigarettes per day and higher dependence, leading to

stronger cravings and lower successful nicotine cessation [76].

Pharmacodynamics

Nicotine's pharmacological effects are mediated through binding to nicotinic acetylcholine (nACh) receptors, which are present in neuromuscular junctions, autonomic ganglia, and the brain [77]. Dependence is largely mediated by neuronal nicotinic acetylcholine receptor activation in the ventral tegmental area and the nucleus accumbens [78]. Nicotine binding leads to a release of dopamine, similar to other drugs that cause dependence [78]. Chronic exposure leads to neuroadaptation, which underlies nicotine dependence and tolerance [79]. Withdrawal symptoms include depression, anxiety, mood disturbances, impatience, difficulty concentrating, insomnia, and restlessness [80]. These symptoms typically start within 1-2 days of stopping nicotine use, peak in the first week and can last up to 3–4 weeks [80]. However, individuals who have quit smoking continue to face a heightened risk of relapse, even after extended periods of abstinence [81]. The effects of (R)-nicotine, which is barely present in tobacco, in humans are largely unknown. Research in animals has shown that stereoisomerism of nicotine influences its disposition kinetics [82, 83] and that (R)-nicotine has lower potency at nicotine receptors [84].

Toxicity

Green tobacco sickness is a condition commonly found in tobacco harvesters who absorb nicotine through their skin when handling wet tobacco plants, sometimes resulting in acute nicotine intoxication [85]. Traditionally, nicotine was consumed only as part of the tobacco plant. With the emergence of isolated nicotine in products, such as ecigarettes and oral nicotine pouches, the nicotine concentration is no longer limited to the content in the plant, and more highly concentrated products are available, potentially posing greater risks of acute intoxication. Lethal ingested oral doses of nicotine have been estimated to be 6.5–13 mg/kg body weight [86-88]. However, based on reports of non-fatal cases with much higher doses, these estimates might be too low [87], while tolerance also has an influence. Mild symptoms of intoxication are mainly cholinergic and include nausea, vomiting, diarrhoea, respiratory difficulty, and initial tachycardia, followed by bradycardia as toxicity progresses [85]. Severe intoxication can lead to seizures, hypotension, and respiratory depression, which can be lethal [89]. Children are especially vulnerable and symptoms may occur after ingestion of even 1 mg of nicotine, with the minimum estimated lethal dose being 1 mg/ kg body weight [90]. The majority of consultations in poison centres regarding e-liquid exposure concern children. Exposure is mostly unintentional, as children are easily attracted to the appealing flavourants of nicotine products [91, 92].

Interactions

Menthol is commonly added to tobacco or e-liquids as a flavourant for its cooling, soothing and anaesthetic effects, and is also metabolised via CYP2A6 [93]. Smokers of mentholated cigarettes have decreased rates of nicotine metabolism, potentially through enzyme competition [94]. Furthermore, because of its anaesthetic effects, menthol suppresses smoke-related irritation and thus facilitates inhalation and increases nicotine exposure [95]. Known drug interactions that lead to decreased nicotine metabolism include those with methoxsalen, selegiline or tranyl-cypromine [96]. Tobacco smoke induces the expression of CYP1A1 and CYP1A2, leading to faster metabolism of substances primarily metabolised by these enzymes, e.g. caffeine, haloperidol, propranolol, and oestradiol [97].

Therapeutic use

Nicotine is used as a therapeutic agent in nicotine replacement therapy products, helping smokers to quit by alleviating craving and withdrawal symptoms. Nicotine replacement therapy can be divided into short-acting (e.g. gums, inhalers, mouth or nasal sprays) and long-lasting (patches), and a combination of long- and short-acting nicotine replacement therapy products is more effective in promoting smoking cessation [98]. Nicotine replacement therapy products demonstrate low abuse liability, as they result in lower peak concentrations delivered less rapidly than cigarettes [99]. Addiction to licensed nicotine replacement therapy is rare among never-users of tobacco [100]. However, in smokers who successfully use such products for smoking cessation, sustained use for longer than the recommended treatment duration is common [101, 102]. Other currently approved treatment options for smoking cessation include the partial nicotinic acetylcholine receptor agonist varenicline and the norepinephrine-dopamine reuptake inhibitor bupropion, while the plant alkaloid cytisine, which has a similar mechanism of action to varenicline, is also used in some European countries [102]. Although these therapeutic options exist and most smokers would like to quit, smoking cessation rates remain low [102].

Individuals suffering from mental illnesses, such as schizophrenia, major depression, generalised anxiety, and substance-use disorders, have higher smoking rates and higher nicotine dependence than smokers without mental illnesses [103]. A common explanation for this association is that patients self-medicate their symptoms with nicotine, as the nicotinic acetylcholine receptor is involved in both schizophrenia and addiction, and nicotine can attenuate extrapyramidal and negative symptoms, particularly anhedonia [104]. Nicotine effects also include improved sensory gating, which can ameliorate schizophrenic symptoms [105]. However, the causality of this association is unclear, i.e. whether smoking can also lead to mental illness and whether this association is based on shared risk factors or if the self-medication hypothesis holds true [106].

Exposure to tobacco smoke, smokeless tobacco, and even dietary nicotine intake has been shown to be inversely associated with the risk of Parkinson's disease [107–109]. In a study investigating the incidence of Parkinson's disease in twins, the twins who smoked had a lower incidence than their non-smoking twins [110]. These results point towards a possible protective effect of nicotine. However, several clinical trials investigating the effects of nicotine patches and gums on disease progression have yielded mostly negative results [111–113]. Nicotine has also been suggested to be an enhancer of cognitive performance in patients with

Alzheimer's disease. Studies have reported an inverse relationship between smoking and the latter [114]; however, when controlling for industry affiliation and study design, smoking was found to increase the risk of Alzheimer's disease [115]. While nicotine has been shown to improve the pathology in animal models [116, 117], it has failed to improve the memory of patients in clinical studies [118, 119]. However, positive effects on attention have been observed [119].

Smokers are less affected by ulcerative colitis than nonsmokers or former smokers [120]. This association has been largely attributed to the anti-inflammatory properties of nicotine. Nicotine activates the cholinergic anti-inflammatory pathway by binding to a7 nicotinic acetylcholine receptors, which regulate cytokine production through suppression of nuclear factor-kB and inhibition of innate immune responses, limiting potentially hazardous inflammatory responses in the protective and non-toxic range [121]. Animal studies have shown that the activation of the cholinergic pathway can protect against immune-mediated diseases, such as acute lung injury [122], sepsis [123], viral myocarditis [124], acute kidney injury [125] and neuroinflammation [126]. Activation has not been shown to cause immunosuppression, as pro-inflammatory cytokines are reduced from a toxic to a healthy range [121]. Nevertheless, tobacco smoke contains a plethora of pro-inflammatory substances, leading to various lung disorders, such as asthma and chronic obstructive pulmonary disease [127].

Cannabis

Plants of the genus Cannabis and its main species Cannabis sativa are cultivated for various purposes. While the term "hemp" is used to refer to the undifferentiated cannabis plant material, it has also come to refer to the fibrous plant stem, which has a wide range of industrial uses, including the manufacture of paper and textiles. The use of plant parts as herbal medicines for gastrointestinal, rheumatologic or infectious ailments can be traced back to ancient China, where occasional mind-altering properties of the preparations were noted [128]. In the following centuries, the psychoactive effects of selectively bred species were utilised for ceremonial and recreational purposes [129]. There have been more than 100 cannabinoids isolated from Cannabis sativa [130], which are present alongside other chemical compounds, such as terpenes, flavonoids and alkaloids. The most researched cannabinoids are $\Delta 9$ -tetrahydrocannabinol (THC), the main psychoactive compound, and cannabidiol (CBD). Cannabinol (CBN) is another phytocannabinoid marketed as an overthe-counter sleeping aid, though formal evidence of its efficacy and safety is lacking [131].

Cannabis can be consumed via different routes and the inter-individual variability in pharmacokinetic profiles is extensive [132]. Smoking and vapour inhalation (e.g. via an electronic cigarette or herb vaporiser) are the most common routes for recreational use, although oral intake is increasing [133]. For therapeutic uses of THC, a spray for oromucosal application has been approved in several countries [134]. CBD is consumed by various routes in complementary medicine, including oral, inhalational, topical and sublingual application, and via oral intake for approved indications [135].

Pharmacokinetics

The phytocannabinoids THC, CBD, and CBN are lipophilic compounds with generally poor and highly variable oral bioavailability [136]. Orally absorbed cannabinoids undergo extensive first-pass hepatic and intestinal metabolism. For THC, oral bioavailability has been reported to range from as low as 6% for edible cannabis products up to 20% for standardised extracts and bioavailability can be increased by consumption of a high-fat meal. While the time to reach peak THC concentrations (T_{max}) is approximately 2 hours when taken on an empty stomach, intake with a fatty meal can increase the T_{max} up to 6–7 hours [137]. In contrast, THC is very rapidly absorbed when cannabis products are inhaled (T_{max} 3–10 min) and exhibits a higher bioavailability by this route (10-35%) [136]. The absorption profile of oromucosally applied THC lies between oral or inhalational routes. It is more rapidly absorbed than after oral application, but not as quickly as via inhalation, as some fraction of buccal THC is swallowed and gets absorbed in the same way as orally applied cannabis products [136]. Cannabinoids bind to albumin and lipoproteins and distribute rapidly to well-perfused organs, such as the brain, heart, lungs and liver. The parent compounds and their metabolites also partition to adipose tissue, where they accumulate after chronic use. After inhalation, THC concentrations peak quickly (within 3-10 minutes) and then decline markedly over the next hour due to extensive tissue distribution [138]. After a single dose, an estimated apparent terminal half-life of 22 hours has been reported for THC, and 31 hours for CBD [132, 139]. After chronic use, a markedly prolonged and variable terminal half-life of 5-13 days was described for THC and 2-5 days for CBD, likely because of redistribution from adipose tissue [132, 140]. Accordingly, after cessation of chronic use, THC metabolites can sometimes be detected for several weeks in urine [141]. As lipophilic compounds, cannabinoids readily cross the placental barrier [142] and can be measured in maternal milk [143].

THC and CBD undergo phase 1 metabolism by CYP enzymes and phase 2 metabolism mainly by glucuronidation, and in vitro data suggest that cannabinoids may be substrates of drug transporters such as P-glycoprotein (P-gp) [132]. THC is metabolised by CYP2C9, CYP2C19 and CYP3A4 into the psychoactive metabolite 11-OH-THC, which gets further transformed into the inactive form 11-COOH-THC. CBD is primarily a substrate of CYP2C19 and CYP3A4, with minor contributions of CYP1A1, CYP1A2, CYP2C9 and CYP2D6; data on the pharmacologic activity of resulting metabolites are sparse [136]. Polymorphisms in the genes of the aforementioned metabolising enzymes and drug transporters have been linked to pharmacokinetic alterations in a few studies. For instance, poor metabolisers of CYP2C9 tend to have higher THC and lower metabolite exposure [144].

Pharmacodynamics

Cannabinoids – both naturally occurring and synthetic – exert their effects mainly by modulating the endocannabinoid system, which plays pleiotropic roles in maintaining local homeostasis in multiple organs and comprises several receptors (cannabinoid receptors CB1 and CB2 are the most extensively studied), endogenous ligands (endo-

cannabinoids) and corresponding metabolising enzymes. THC is a high-affinity partial agonist at the G-proteincoupled receptors CB1 and CB2. This distinguishes this phytocannabinoid from synthetic cannabinoids, also called synthetic cannabinoid receptor agonists, which are often full agonists with even higher affinity to these receptors, resulting in increased toxicity [145, 146]. CB1 agonism mediates the most extensively studied effects of THC, including increased appetite, reduced spasticity in certain neurologic conditions, and a wide range of neuropsychiatric manifestations [128]. CBD, in contrast, is a lowaffinity negative allosteric modulator of CB1 and CB2 and seemingly exerts mostly indirect effects on the endocannabinoid system, for instance, by influencing endocannabinoid transport via fatty acid-binding proteins. Multiple non-cannabinoid receptors (e.g. serotonin receptors, transient receptor potential channels and GABAA receptors) are hypothesised to contribute to the wide range of purported immunomodulatory, antioxidant, neuroprotective and psychotropic effects of CBD [147]. A shared effect of THC, CBD and CBN is sedation. However, while CBD does not seem to produce impairing psychoactive or significant cardiac effects, THC can produce marked neuropsychiatric symptoms and tachycardia resulting from stimulation of CB1 receptors in the brain and heart, respectively [136]. Genetic variations affecting cannabinoid receptors and other molecular targets of cannabis are associated with pharmacodynamic changes and the risk of developing a cannabis use disorder [144]. However, there is only limited data on the clinical relevance and therapeutic consequences of cannabis pharmacogenomics [144].

Toxicity

In contrast to synthetic cannabinoids, cannabis products are generally considered to be of low acute toxicity [148]. Children and older patients are, however, more at risk of developing severe symptoms after the consumption of cannabis [149, 150]. A lethal dose in humans has not been established, and the risk of death is considered very low in the general population, but might be elevated in specific contexts, such as the presence of cardiac comorbidities or physical trauma occurring during intoxication [151]. Most cannabis-related toxic effects are an extension of CB1 agonism by THC, while health risks associated with CBD are considered negligible [152]. Neuropsychiatric effects, such as euphoria, alterations of perception, psychosis, paranoia and anxiety, are frequently described after the use or abuse of cannabis with high THC content. THC can also cause orthostatic hypotension and precipitate acute cardiovascular events [153]. Cannabis-induced impairments of cognition and judgement, as well as psychomotor deficits, increase the risk of accidents. After inhalation of a typical single dose of THC-containing cannabis, neuropsychiatric symptoms are typically greatest in the first hour and gradually decline over several hours, with significant driving impairment persisting for 5-7 hours. After oral consumption, a markedly delayed onset of effects and a longerlasting impairment are expected [154]. Tachycardia may additively increase the cardiotoxic risk of other drugs of abuse, such as stimulants. The treatment of acute cannabis intoxication is supportive. Observation in a quiet environment and avoiding unnecessary stimulation is sufficient in

most cases; persistent agitation can be treated with benzodiazepines [149].

Chronic cannabis use has been associated with a range of long-term adverse health effects. If marijuana products are consumed by combustion, similar health concerns as those associated with tobacco products have been raised. Cannabis is an addictive substance and cannabis use disorder, as well as cannabis withdrawal syndrome, are well recognised [152]. The Diagnostic and Statistical Manual of Mental Disorders (DSM-5) has defined a cannabis use disorder as a problematic pattern of cannabis use leading to clinically significant impairment or distress, characterised by several criteria reflecting impaired control, psychosocial distress, risky behaviour, and adaptation [155]. A link with other psychiatric disorders is somewhat more controversial. Associations between cannabis consumption and increased risks of schizophrenia, depression and anxiety have been described, but the underlying causal relationship between these observations is still debated [152, 156]. In the context of heavy cannabis use, a cyclic vomiting disorder termed "cannabis hyperemesis syndrome" can occur. This is thought to result from dysregulation of the endocannabinoid system, possibly involving nociceptive pathways via the transient receptor potential vanilloid 1 (TR-PV1) receptors. The observation that hot showers and topical capsaicin, which both activate TRPV1, alleviate symptoms in some users, supports this hypothesis, but other mechanisms likely contribute. Some antipsychotics, such as haloperidol or droperidol, are thought to be more effective than more typical antiemetics in the symptomatic management of this disorder; continued abstinence from cannabis products is, however, the only definitive treatment [157].

As the endocannabinoid system is thought to play an important role in brain development and studies suggest detrimental effects of psychoactive cannabinoids on neural connectivity in children, consumption of cannabis is not recommended during pregnancy and lactation [158]. For similar reasons, the consumption of cannabis products by children and adolescents should also be discouraged. Of particular concern for adolescents is the increased incidence of psychiatric disease, especially psychosis, with regular use of high-potency THC products [159–161].

Interactions

Data on interactions between cannabinoids and pharmaceuticals are sparse and consist primarily of in vitro studies, case reports, and theoretical considerations, with very few clinical trials available to reliably assess the clinical relevance [162]. Similar to tobacco, compounds in cannabis smoke induce CYP1A1 and CYP1A2, and the combined use of tobacco and cannabis products produces an additive inductive effect. Regular inhalation of cannabis smoke can lead, among others, to reduced exposure to the antipsychotics clozapine, olanzapine, and chlorpromazine, some antidepressants, such as duloxetine and agomelatine, and the methylxanthines caffeine and theophylline [96]. There are several reports of an increase in the anticoagulant effect of warfarin in combination with cannabis use, which is thought to be mediated by inhibition of CYP2C9 [163-165]. Cannabis consumption is associated with an increase in tacrolimus levels, possibly because of inhibition of P-glycoprotein and/or CYP3A4 by cannabinoids [162]. The latter mechanism was also proposed as a possible explanation for increased buprenorphine concentrations noted in consumers of cannabis in an observational study [166]. Several clinical trials reported an increase in clobazam levels when the benzodiazepine was combined with CBD, possibly due to CYP2C19 inhibition by the cannabinoid [162]. Conversely, the potent CYP3A4 inhibitor ketoconazole has been shown to increase cannabinoid exposure, while the CYP-inductor rifampicin had the opposite effect [167].

Therapeutic use

While the non-prescription use of phytocannabinoids is widespread and encompasses the recreational use of cannabis (with a varying legal landscape even within the same country, e.g. the US) and the use of CBD products as herbal supplements (for example, self-medication as a sleep aid or management of pain and anxiety), there are only a few approved medical indications for cannabinoids, with regional variations. For instance, in several European countries, a THC-containing cannabis mouth spray can be prescribed to relieve refractory spasticity in multiple sclerosis patients, whereas in the US, the THC/ Δ^9 -THC analogues nabilone and dronabinol are approved for chemotherapy-induced nausea and vomiting resistant to conventional antiemetics, with dronabinol being additionally indicated for anorexia associated with weight loss in patients with acquired immunodeficiency syndrome (AIDS) [152]. CBD is approved for the treatment of severe forms of epilepsy associated with Lennox-Gastaut syndrome, Dravet syndrome, and tuberous sclerosis [147]. As an add-on therapy for treatment-resistant epilepsy in general, CBD reduced the occurrence of seizures by 50% or more, with a number needed to treat of 8 [168]. The cannabinoid exhibited a favourable safety profile, characterised mainly by mild to moderate adverse events, such as drowsiness, ataxia and diarrhoea. There have been reports of transaminase elevations leading to cessation of CBD therapy and the combination with other antiepileptic drugs, such as valproate, may increase the risk of hepatotoxicity [169].

Cannabinoids, mainly THC and CBD, are being investigated for the treatment of a myriad of other conditions. THC has been proposed as a treatment for chronic pain, glaucoma and some psychiatric diseases, such as Tourette's syndrome and insomnia, but robust evidence of efficacy and safety for most off-label indications is lacking. Cannabis for chronic pain has garnered much interest [2], but it is unclear if the analgesic benefits outweigh the increased risk of adverse effects [170]. Products with a high THCto-CBD ratio appear to be associated with short-term improvements in pain severity at the cost of frequent occurrences of sedation and dizziness [171]. Similarly, since the evidence of benefit in other off-label indications is generally low quality or lacking, whereas neuropsychiatric adverse effects are well described, doubts about the benefitrisk ratio of cannabis for the treatment of these conditions have been raised [152].

After noting that CBD counteracted some THC-associated psychotic symptoms when co-administered, extensive research has been conducted into the antipsychotic and antianxiety effects of CBD. While preliminary evidence is encouraging, with one study suggesting similar efficacy and superior safety of CBD compared to amisulpride for the treatment of schizophrenia [172], much uncertainty remains about optimal dosing and a place in therapy of this cannabinoid [173]. Other active areas of research are the potential uses of CBD in the treatment of neurodegenerative diseases and inflammatory bowel disease [152].

Psilocybin

Psilocybin (4-phosphoryloxy-N,N-dimethyltryptamine) is a naturally occurring psychedelic agent found in many species of mushrooms of the genus Psilocybe, such as Psilocybe cubensis and Psilocybe mexicana [174, 175]. There has been renewed interest in the use of psilocybin for the treatment of various psychiatric disorders and psychoactive mushrooms have been used for recreational, spiritual and ethnomedical purposes for over 1000 years [174, 175]. Psilocybin and its active metabolite psilocin (4-hydroxy-N,N-dimethyltryptamine, 4-HO-DMT) were first isolated, identified and synthesised in the late 1950s by the Swiss chemist Albert Hofmann [176]. In the 1960s, tablets containing 2 mg psilocybin were distributed by Sandoz Pharmaceuticals under the trade name Indocybin^T and were used as an adjunct to psychotherapy and for psychiatric research. However, the increasing popularity of recreational psychedelic use led to its classification as a Schedule I drug in 1970 in the US, and human research with psilocybin came to a halt until the 1990s. Nevertheless, recreational use of psilocybin-containing products has continued and has increased lately in the US [177, 178].

Psilocybin is typically used orally. For ethnomedical or recreational use, usually fresh or dried mushrooms or truffles (sclerotia) are consumed, but psilocybin can also be chemically synthesised and used as a pure substance as in the clinical trials investigating its therapeutic potential [174-176, 179]. Self-reports indicate that for recreational use, dosages ranging from 10 to 50 g of fresh mushrooms or 1 to 5 g of dried mushrooms are ingested [180] with an average psilocybin content of around 10 mg psilocybin (1%) per gram of dried Psilocybe cubensis [181]. There is considerable variability in psilocybin and psilocin content between different mushroom species and also within the same species according to the season, as well as the origin or size of the mushroom [180, 182–185]. Furthermore, psilocybe mushrooms, in addition to psychoactive compounds, including psilocybin and psilocin, may also contain baeocystin (4-phosphoryloxy-N-methyltryptamine) and norbaeocystin (4-phosphoryloxytryptamine) along with other potential psychoactive constituents (summarised in [179, 186]).

Pharmacokinetics

Psilocybin is a prodrug that is rapidly dephosphorylated to its active metabolite psilocin after oral ingestion by intestinal alkaline phosphates and nonspecific esterases [187–192]. Psilocin is subject to extensive metabolism, and around 80% is metabolised via glucuronidation through UDP-glucuronosyltransferase (UGT)1A9 in the liver and UGT1A10 in the small intestine, resulting in the formation of the inactive psilocin-O-glucuronide [186, 190, 193–196]. Additionally, psilocin undergoes deamina-

tion and oxidation by liver aldehyde dehydrogenase and monoamine oxidase (MAO), leading to the formation of the inactive 4-hydroxyindole-3-acetic acid (4-HIAA) [194, 197]. In a study of healthy volunteers receiving 1 mg psilocybin base intravenously and 0.224 mg/kg psilocybin base orally, the estimated mean systemic availability of psilocin was $52.7 \pm 20\%$ of the oral psilocybin dose [187]. Administration of oral psilocybin displays dose-proportional changes in plasma concentrations of unconjugated psilocin, psilocin glucuronide, and 4-HIAA with dose-dependent urinary recovery [190]. Following oral psilocybin administration, psilocin is detected in plasma within 20-40 minutes, and maximal plasma psilocin concentrations are reached within 2-3 hours [190, 197-199]. Psilocin and its metabolites demonstrate first-order elimination kinetics with a plasma half-life of psilocin ranging between 1.5 and 3 hours after oral ingestion [187, 190, 194, 198, 199]. Approximately 55% of an orally administered psilocybin dose is excreted through the kidneys within 24 hours in the form of 4-HIAA, unconjugated psilocin, or psilocin-O-glucuronide [190]. Only a small amount of psilocin is eliminated unchanged in the urine (1.5-3.5%) [190, 194, 198] indicating that no dose adjustment is needed in patients with mild to moderate renal impairment. In studies with healthy volunteers, plasma concentration changes of psilocin over time closely mirrored subjective effect-time curves within subjects, and no acute tolerance was observed [190]. CYP2D6 does not appear to significantly contribute to the metabolism of psilocin [196]; however, only limited pharmacogenetic information is available.

Pharmacodynamics

The subjective effects of psilocybin are primarily mediated by agonism at the serotonin 5-hydroxytryptamine-2A (5-HT_{2A}) receptor [200]. However, psilocin also binds to other serotonergic receptors (5-HT_{1A}, 5-HT_{1D} and 5-HT_{2C}) and acts as a serotonin transporter (SERT) inhibitor, but unlike lysergic acid diethylamide (LSD), dopamine receptors seem to be less or not involved [186, 192, 197, 201]. The threshold dose for subjective effects is 2 (range: 1–5) mg [197, 202, 203]. Oral doses of 15-25 mg psilocybin can be considered intermediate doses, whereas oral doses of 30-40 mg psilocybin are considered high [190, 197, 199, 203, 204]. Subjective and autonomic effects are dose-dependent, and psilocybin at moderate to high doses induces pronounced alterations of waking consciousness, including altered perception of time and space, visual (pseudo)hallucinations (recognised by the person experiencing it as being subjective and unreal, in contrast to "true" hallucinations, which are considered "real" by the person), audiovisual synaesthesia, experiences of unity, mostly positively experienced derealisation and depersonalisation phenomena, and mystical-type experiences but also ego dissolution, and anxiety [187, 197, 199, 202-204]. Typically, effects following oral ingestion of psilocybin start after around 20-50 minutes and peak subjective effects are reached around 1.5-2 hours after ingestion [190, 199, 202, 204], aligning with the peak maximal observed psilocin plasma concentrations [190]. The effect intensity and duration are dose-dependent (5.5-6.5 hours for moderate to high doses of oral psilocybin) [190, 197, 199, 202, 204].

Toxicity

Overall, psilocybin exhibits a relatively favourable somatic safety profile [197, 199, 204-206] and shows low abuse liability and no dependence syndrome [207]. For rodents, an LD₅₀ of 280–285 mg/kg psilocybin was reported [208]. Psilocybin produces dose-dependent but moderate and transient increases in blood pressure, heart rate and body temperature and increases pupil size [199, 202, 204, 206, 209]. Very high doses may increase the QT interval, in particular when combined with drugs prolonging the QT time, such as some antidepressants [210, 211]. However, no effects by electrocardiogram were found in a clinical study using doses in the range of 45–315 µg/kg body weight over 24 hours of continuous recording [202], and one clinical study did not find significant QTc interval prolongation during the peak response to 25 mg psilocybin in healthy volunteers [210]. Chronic administration ("microdosing", i.e. the practice of ingesting sub-threshold doses over several weeks with the aim of achieving potential therapeutic benefits without hallucinogenic or cognitive impairment effects) of psilocybin over a prolonged time (months) may theoretically increase the risk of cardiac valve thickening via 5-HT_{2B} receptor stimulation [212, 213]. Frequently reported side effects, also occurring more frequently at higher dosages, include fatigue, lack of concentration and energy, nausea, headache, inner tension, impaired balance, loss of appetite, and dry mouth [199, 204, 209]. Safety concerns relate to psychological rather than physiological risks [205, 209]. Psilocybin use poses a risk of psychological distress, including fear, anxiety, paranoia and dysphoria, and is, in rare cases, associated with psychosis and hallucinogen persisting perception disorder (HPPD), while fatal accidents and suicide have infrequently been described [179, 180, 205, 214, 215]. Although treatment is supportive, it has been repeatedly shown that pretreatment with the 5-HT_{2A} receptor antagonist ketanserin blocks the effects of psilocybin [200, 216-218] and ketanserin was able to reverse the effects induced by LSD [219]. In mice, no evidence of mutagenicity was observed [220]. In rodents, psilocin has been shown to cross the placental barrier [221], but there are no human reports or data on outcomes following psilocybin use during pregnancy.

Interactions

Previous reports imply potential pharmacodynamic interactions with psilocybin and various antidepressants or mood stabilisers, mainly drugs that affect serotonergic neurotransmission (summarised in [222-224]). However, few data from controlled clinical trials are available. Case reports and non-controlled studies have indicated a generally decreased subjective effect of psychedelics in people undergoing chronic treatment with serotonin reuptake inhibitors (SSRIs) and MAO inhibitors [225-229], whereas an increased subjective and physical response has been reported with chronic use of tricyclic antidepressants or lithium [227]. However, a recent double-blind, placebocontrolled crossover trial in healthy participants did not observe any effect of a 2-week pretreatment with the SSRI escitalopram on the psilocybin-induced positive mood or mind-altering effects but rather a decrease in adverse drug effects, including anxiety [210]. Pretreatment with escitalopram decreased the psilocybin-induced increase in

blood pressure, and no additional increase in body temperature was noted, suggesting no additional serotonergic toxicity [210]. A recent clinical trial evaluating psilocybin in patients suffering from treatment-resistant depression with ongoing SSRI treatment (mean \pm SD duration 14.7 \pm 13.2 months) also showed good treatment results, and overall, the combination was well tolerated [3].

In controlled clinical trials, pretreatment with the 5-HT_{2A} antagonist ketanserin decreases the effects of psilocybin in a dose-dependent manner [200, 216-218]. Similarly, other drugs acting as 5-HT_{2A} antagonists, including the antipsychotics risperidone and chlorpromazine, which both also act as antagonists at the dopamine D2 receptor, significantly attenuated various facets of psilocybin-induced alterations of consciousness in clinical studies [200, 230]. Interestingly, pretreatment with the dopamine D2 receptor antagonist haloperidol decreased positively experienced derealisation and depersonalisation phenomena but increased anxious ego dissolution, suggesting that classic neuroleptics might enhance some psilocybin-induced psychotomimetic symptoms [200]. Additionally, ongoing treatment with a 5-HT_{1A} antagonist might also decrease psilocybin-induced effects, including perceptual alteration, as has been observed following pretreatment with buspirone [231]. Anecdotal data suggest an increased risk of seizures when psychedelics including psilocybin are used with lithium, but not when co-administered with lamotrigine [222].

Therapeutic use

The use of psilocybin is currently being investigated in the treatment of several psychiatric disorders including depression (e.g. [3, 232]), (existential) anxiety (e.g. [4, 233, 234]), anorexia nervosa [235], posttraumatic stress disorder (PTSD) (e.g. [236]), and substance-use disorder (e.g. [237, 238]) but also in the treatment of some neurological disorders, including migraine and cluster headaches [239, 240]. Due to promising preliminary results, psilocybin was granted a breakthrough therapy designation by the FDA for treatment-resistant depression in 2018 and major depressive disorder in 2019 [241].

Conclusions

While the therapeutic potential of caffeine, nicotine, cannabis, and psilocybin is not yet fully recognised, ongoing research is exploring potential new applications. Each substance exhibits a generally favourable safety profile, and overdose lethality is low. However, the neuropsychiatric risks associated with the consumption of cannabis and psilocybin should be taken into consideration, as well as the detrimental health effects of smoke exposure and dependence liability related to nicotine use, to facilitate a balanced understanding of both benefits and risks.

Financial disclosure

This study received no funding.

Potential competing interests

All authors have completed and submitted the International Committee of Medical Journal Editors form for disclosure of potential conflicts of interest. *EL* reports academic institution research support for the investigation of the pharmacology and toxicology of e-cigarettes. *NLB* received consulting fees from Achieve Life Sciences and Qnovia, com-

panies that are developing new smoking cessation medications, and has been a paid expert witness in litigation against tobacco companies. All authors declare that they have no conflict of interest in relation to the content of this work.

References

- World Health Organization (WHO). Drugs (psychoactive). Available from: https://www.who.int/health-topics/drugs-psychoactive#tab=tab_1
- Whiting PF, Wolff RF, Deshpande S, Di Nisio M, Duffy S, Hernandez AV, et al. Cannabinoids for medical use: A systematic review and meta-analysis. JAMA. 2015 Jun;313(24):2456–73. http://dx.doi.org/10.1001/jama.2015.6358.
- Goodwin GM, Croal M, Feifel D, Kelly JR, Marwood L, Mistry S, et al. Psilocybin for treatment resistant depression in patients taking a concomitant SSRI medication. Neuropsychopharmacology. 2023 Sep;48(10):1492–9. http://dx.doi.org/10.1038/ s41386-023-01648-7.
- Ross S, Bossis A, Guss J, Agin-Liebes G, Malone T, Cohen B, et al. Rapid and sustained symptom reduction following psilocybin treatment for anxiety and depression in patients with life-threatening cancer: a randomized controlled trial. J Psychopharmacol. 2016 Dec;30(12):1165–80. http://dx.doi.org/10.1177/ 0269881116675512.
- Fisone G, Borgkvist A, Usiello A. Caffeine as a psychomotor stimulant: mechanism of action. Cell Mol Life Sci. 2004 Apr;61(7-8):857–72. http://dx.doi.org/10.1007/s00018-003-3269-3.
- Willson C. The clinical toxicology of caffeine: A review and case study. Toxicol Rep. 2018 Nov;5:1140–52. http://dx.doi.org/10.1016/ j.toxrep.2018.11.002.
- Nelson LS, Lewin NA, Howland MA, Hoffmann RS, Goldfrank LR, Flomenbaum NE, editors. Goldfrank's Toxicologic Emergencies. 9th ed. New York: McGraw Hill Medical; 2011.
- Jamieson RW. The essence of commodification: caffeine dependencies in the early modern world. J Soc Hist. 2001;35(2):269–94. http://dx.doi.org/10.1353/jsh.2001.0125.
- Olson KR. Poisoning & Drug Overdose. By the faculty, staff and associates of the California Poison Control System. 4th ed. New York: McGrawHill; 2004.
- Davis JM, Zhao Z, Stock HS, Mehl KA, Buggy J, Hand GA. Central nervous system effects of caffeine and adenosine on fatigue. Am J Physiol Regul Integr Comp Physiol. 2003 Feb;284(2):R399–404. http://dx.doi.org/10.1152/ajpregu.00386.2002.
- Caffeine content of popular drinks. Available from: https://www.math.utah.edu/~yplee/fun/caffeine.html
- Davies S, Lee T, Ramsey J, Dargan PI, Wood DM. Risk of caffeine toxicity associated with the use of 'legal highs' (novel psychoactive substances). Eur J Clin Pharmacol. 2012 Apr;68(4):435–9. http://dx.doi.org/10.1007/s00228-011-1144-y.
- Aranda JV, Cook CE, Gorman W, Collinge JM, Loughnan PM, Outerbridge EW, et al. Pharmacokinetic profile of caffeine in the premature newborn infant with apnea. J Pediatr. 1979 Apr;94(4):663–8. http://dx.doi.org/10.1016/S0022-3476(79)80047-5.
- Aguilar-Navarro M, Muñoz G, Salinero JJ, Muñoz-Guerra J, Fernández-Álvarez M, Plata MD, et al. Urine caffeine concentration in doping control samples from 2004 to 2015. Nutrients. 2019 Jan;11(2):286. http://dx.doi.org/10.3390/nu11020286.
- Stavchansky S, Combs A, Sagraves R, Delgado M, Joshi A. Pharmacokinetics of caffeine in breast milk and plasma after single oral administration of caffeine to lactating mothers. Biopharm Drug Dispos. 1988;9(3):285–99. http://dx.doi.org/10.1002/bod.2510090307.
- Ito S. Drug therapy for breast-feeding women. N Engl J Med. 2000 Jul;343(2):118–26. http://dx.doi.org/10.1056/NE-JM200007133430208.
- Brent RL, Christian MS, Diener RM. Evaluation of the reproductive and developmental risks of caffeine. Birth Defects Res B Dev Reprod Toxicol. 2011 Apr;92(2):152–87. http://dx.doi.org/10.1002/bdrb.20288.
- Knutti R, Rothweiler H, Schlatter C. Effect of pregnancy on the pharmacokinetics of caffeine. Eur J Clin Pharmacol. 1981;21(2):121–6. http://dx.doi.org/10.1007/BF00637512.
- Schmidt M, Farna H, Kurcova I, Zakharov S, Fric M, Waldauf P, et al. Successfull treatment of supralethal caffeine overdose with a combination of lipid infusion and dialysis. Am J Emerg Med. 2015;33(5):738 e5-7. http://dx.doi.org/10.1016/j.ajem.2014.11.002.
- Tajima Y. Coffee-induced Hypokalaemia. Clin Med Insights Case Rep. 2010;3:9–13. http://dx.doi.org/10.4137/CCRep.S4329.
- Bradberry SM, Vale JA. Disturbances of potassium homeostasis in poisoning. J Toxicol Clin Toxicol. 1995;33(4):295–310. http://dx.doi.org/10.3109/15563659509028915.

- Wallukat G. The beta-adrenergic receptors. Herz.
 2002 Nov;27(7):683–90. http://dx.doi.org/10.1007/s00059-002-2434-z.
- Echeverri D, Montes FR, Cabrera M, Galán A, Prieto A. Caffeine's vascular mechanisms of action. Int J Vasc Med. 2010;2010:834060. http://dx.doi.org/10.1155/2010/834060.
- Carrillo JA, Benitez J. Clinically significant pharmacokinetic interactions between dietary caffeine and medications. Clin Pharmacokinet. 2000 Aug;39(2):127–53. http://dx.doi.org/10.2165/ 00003088-200039020-00004.
- Sharp DS, Benowitz NL. Pharmacoepidemiology of the effect of caffeine on blood pressure. Clin Pharmacol Ther. 1990 Jan;47(1):57–60. http://dx.doi.org/10.1038/clpt.1990.8.
- Caldeira D, Martins C, Alves LB, Pereira H, Ferreira JJ, Costa J. Caffeine does not increase the risk of atrial fibrillation: a systematic review and meta-analysis of observational studies. Heart.
 2013 Oct;99(19):1383–9. http://dx.doi.org/10.1136/heartjnl-2013-303950.
- Frost L, Vestergaard P. Caffeine and risk of atrial fibrillation or flutter: the Danish Diet, Cancer, and Health Study. Am J Clin Nutr. 2005 Mar;81(3):578–82. http://dx.doi.org/10.1093/ajcn/81.3.578.
- Wilson RE, Kado HS, Samson R, Miller AB. A case of caffeine-induced coronary artery vasospasm of a 17-year-old male. Cardiovasc Toxicol. 2012 Jun;12(2):175–9. http://dx.doi.org/10.1007/s12012-011-9152-9.
- Forman J, Aizer A, Young CR. Myocardial infarction resulting from caffeine overdose in an anorectic woman. Ann Emerg Med. 1997 Jan;29(1):178–80. http://dx.doi.org/10.1016/ S0196-0644(97)70326-3.
- Khan S, Babu K, Sidhu R, Niemi M. Caffeine intoxication treated with hemodialysis. Semin Dial. 2023;36(5):414–8. http://dx.doi.org/10.1111/ sdi.13169
- Rapuri PB, Gallagher JC, Kinyamu HK, Ryschon KL. Caffeine intake increases the rate of bone loss in elderly women and interacts with vitamin D receptor genotypes. Am J Clin Nutr. 2001 Nov;74(5):694–700. http://dx.doi.org/10.1093/ajcn/74.5.694.
- Korpelainen R, Korpelainen J, Heikkinen J, Väänänen K, Keinänen-Kiukaanniemi S. Lifestyle factors are associated with osteoporosis in lean women but not in normal and overweight women: a populationbased cohort study of 1222 women. Osteoporos Int. 2003 Jan;14(1):34–43. http://dx.doi.org/10.1007/s00198-002-1319-6.
- Griffiths RR, Woodson PP. Caffeine physical dependence: a review of human and laboratory animal studies. Psychopharmacology (Berl). 1988;94(4):437–51. http://dx.doi.org/10.1007/BF00212836.
- Martín I, López-Vílchez MA, Mur A, García-Algar O, Rossi S, Marchei E, et al. Neonatal withdrawal syndrome after chronic maternal drinking of mate. Ther Drug Monit. 2007 Feb;29(1):127–9. http://dx.doi.org/10.1097/FTD.0b013e31803257ed.
- McGowan JD, Altman RE, Kanto WP Jr. Neonatal withdrawal symptoms after chronic maternal ingestion of caffeine. South Med J. 1988 Sep;81(9):1092–4. http://dx.doi.org/10.1097/ 00007611-198809000-00006.
- Bernstein GA, Carroll ME, Crosby RD, Perwien AR, Go FS, Benowitz NL. Caffeine effects on learning, performance, and anxiety in normal school-age children. J Am Acad Child Adolesc Psychiatry. 1994;33(3):407–15. http://dx.doi.org/10.1097/ 00004583-199403000-00016.
- Bernstein GA, Carroll ME, Dean NW, Crosby RD, Perwien AR, Benowitz NL. Caffeine withdrawal in normal school-age children. J Am Acad Child Adolesc Psychiatry. 1998 Aug;37(8):858–65. http://dx.doi.org/10.1097/00004583-199808000-00016.
- Higdon JV, Frei B. Coffee and health: a review of recent human research. Crit Rev Food Sci Nutr. 2006;46(2):101–23. http://dx.doi.org/10.1080/10408390500400009.
- Benowitz NL, Hall SM, Modin G. Persistent increase in caffeine concentrations in people who stop smoking. BMJ.
 1989 Apr;298(6680):1075–6. http://dx.doi.org/10.1136/bmj.298.6680.1075.
- Benvenga S, Bartolone L, Pappalardo MA, Russo A, Lapa D, Giorgianni G, et al. Altered intestinal absorption of L-thyroxine caused by coffee. Thyroid. 2008 Mar;18(3):293–301. http://dx.doi.org/10.1089/thy.2007.0222.
- Gertz BJ, Holland SD, Kline WF, Matuszewski BK, Freeman A, Quan H, et al. Studies of the oral bioavailability of alendronate. Clin Pharmacol Ther. 1995 Sep;58(3):288–98. http://dx.doi.org/10.1016/ 0009-9236(95)90245-7.
- Bushra R, Aslam N, Khan AY. Food-drug interactions. Oman Med J. 2011 Mar;26(2):77–83. http://dx.doi.org/10.5001/omj.2011.21.
- Abu-Shaweesh JM, Martin RJ. Neonatal apnea: what's new? Pediatr Pulmonol. 2008 Oct;43(10):937–44. http://dx.doi.org/10.1002/ ppul.20832.

- 44. Diener HC, Gold M, Hagen M. Use of a fixed combination of acetylsalicylic acid, acetaminophen and caffeine compared with acetaminophen alone in episodic tension-type headache: meta-analysis of four randomized, double-blind, placebo-controlled, crossover studies. J Headache Pain. 2014 Nov;15(1):76. http://dx.doi.org/10.1186/1129-2377-15-76.
- Franke AG, Koller G, Krause D, Proebstl L, Kamp F, Pogarell O, et al. Just "like coffee" or neuroenhancement by stimulants? Front Public Health. 2021 Jun;9:640154. http://dx.doi.org/10.3389/ fpubh.2021.640154.
- Antal A, Luber B, Brem AK, Bikson M, Brunoni AR, Cohen Kadosh R, et al. Non-invasive brain stimulation and neuroenhancement. Clin Neurophysiol Pract. 2022 May;7:146–65. http://dx.doi.org/10.1016/ j.cnp.2022.05.002.
- Chen Y, Sun X, Lin Y, Zhang Z, Gao Y, Wu IX. Non-genetic risk factors for Parkinson's disease: An Overview of 46 Systematic Reviews. J Parkinsons Dis. 2021;11(3):919–35. http://dx.doi.org/10.3233/ JPD-202521.
- Hernán MA, Takkouche B, Caamaño-Isorna F, Gestal-Otero JJ. A metaanalysis of coffee drinking, cigarette smoking, and the risk of Parkinson's disease. Ann Neurol. 2002 Sep;52(3):276–84. http://dx.doi.org/ 10.1002/ana.10277.
- Belvisi D, Pellicciari R, Fabbrini A, Costanzo M, Ressa G, Pietracupa S, et al. Relationship between risk and protective factors and clinical features of Parkinson's disease. Parkinsonism Relat Disord. 2022 May;98:80–5. http://dx.doi.org/10.1016/j.parkreldis.2022.04.017.
- Chen JF, Eltzschig HK, Fredholm BB. Adenosine receptors as drug targets—what are the challenges? Nat Rev Drug Discov.
 2013 Apr;12(4):265–86. http://dx.doi.org/10.1038/nrd3955.
- Abbott RD, Ross GW, White LR, Sanderson WT, Burchfiel CM, Kashon M, et al. Environmental, life-style, and physical precursors of clinical Parkinson's disease: recent findings from the Honolulu-Asia Aging Study. J Neurol. 2003 Oct;250(0 Suppl 3):III30–9. http://dx.doi.org/ 10.1007/s00415-003-1306-7.
- Ascherio A, Chen H, Schwarzschild MA, Zhang SM, Colditz GA, Speizer FE. Caffeine, postmenopausal estrogen, and risk of Parkinson's disease. Neurology. 2003 Mar;60(5):790–5. http://dx.doi.org/10.1212/ 01.WNL.0000046523.05125.87.
- Ascherio A, Weisskopf MG, O'Reilly EJ, McCullough ML, Calle EE, Rodriguez C, et al. Coffee consumption, gender, and Parkinson's disease mortality in the cancer prevention study II cohort: the modifying effects of estrogen. Am J Epidemiol. 2004 Nov;160(10):977–84. http://dx.doi.org/10.1093/aje/kwh312.
- Barranco Quintana JL, Allam MF, Serrano Del Castillo A, Fernández-Crehuet Navajas R. Alzheimer's disease and coffee: a quantitative review. Neurol Res. 2007 Jan;29(1):91–5. http://dx.doi.org/10.1179/ 174313206X152546.
- Huxley R, Lee CM, Barzi F, Timmermeister L, Czernichow S, Perkovic V, et al. Coffee, decaffeinated coffee, and tea consumption in relation to incident type 2 diabetes mellitus: a systematic review with meta-analysis. Arch Intern Med. 2009 Dec;169(22):2053–63. http://dx.doi.org/10.1001/archinternmed.2009.439.
- Liu F, Wang X, Wu G, Chen L, Hu P, Ren H, et al. Coffee consumption decreases risks for hepatic fibrosis and cirrhosis: a meta-analysis. PLoS One. 2015 Nov;10(11):e0142457. http://dx.doi.org/10.1371/journal.pone.0142457.
- Steppuhn A, Gase K, Krock B, Halitschke R, Baldwin IT. Nicotine's defensive function in nature. PLoS Biol. 2004 Aug;2(8):E217. http://dx.doi.org/10.1371/journal.pbio.0020217.
- Jordt SE. Synthetic nicotine has arrived. Tob Control. 2023 Apr;32 e1:e113-7. http://dx.doi.org/10.1136/tobaccocontrol-2021-056626.
- Zettler PJ, Hemmerich N, Berman ML. Closing the regulatory gap for synthetic nicotine products. Boston Coll Law Rev. 2018;59(6):1933–82.
- Stephenson J. FDA gains power to regulate synthetic nicotine in e-cigarettes. JAMA Health Forum. 2022 Apr;3(4):e221140. http://dx.doi.org/ 10.1001/jamahealthforum.2022.1140.
- Duren M, Atella L, Welding K, Kennedy RD. Nicotine pouches: a summary of regulatory approaches across 67 countries. Tob Control. 2023 Feb 7:tc-2022-057734.
- Berman ML, Zettler PJ, Jordt SE. Synthetic nicotine: science, global legal landscape, and regulatory considerations. World Health Organ Tech Rep Ser. 2023;1047:35–60.
- Cheetham AG, Plunkett S, Campbell P, Hilldrup J, Coffa BG, Gilliland S 3rd, et al. Analysis and differentiation of tobacco-derived and synthetic nicotine products: addressing an urgent regulatory issue. PLoS One. 2022 Apr;17(4):e0267049. http://dx.doi.org/10.1371/journal.pone.0267049.
- Perfetti TA, Ashraf-Khorassani M, Coleman WM 3rd, Dube MF. Qualitative and quantitative analyses of the enantiomers of nicotine and relat-

- ed alkaloids employing chiral supercritical fluid chromatography in commercial nicotine samples and in e-cigarette products. Contrib Tob Nicotine Res. 2023 Aug;32(3):77–89. http://dx.doi.org/10.2478/ct-tr-2023-0010.
- Benowitz NL, Hukkanen J, Jacob P 3rd. Nicotine chemistry, metabolism, kinetics and biomarkers. Handb Exp Pharmacol. 2009;192:29–60. http://dx.doi.org/10.1007/978-3-540-69248-5
- Tanner JA, Zhu AZ, Claw KG, Prasad B, Korchina V, Hu J, et al. Novel CYP2A6 diplotypes identified through next-generation sequencing are associated with in-vitro and in-vivo nicotine metabolism. Pharmacogenet Genomics. 2018 Jan;28(1):7–16. http://dx.doi.org/10.1097/ FPC.00000000000000317.
- Hukkanen J, Jacob P 3rd, Benowitz NL. Metabolism and disposition kinetics of nicotine. Pharmacol Rev. 2005 Mar;57(1):79–115. http://dx.doi.org/10.1124/pr.57.1.3.
- Pérez-Stable EJ, Herrera B, Jacob P 3rd, Benowitz NL. Nicotine metabolism and intake in black and white smokers. JAMA.
 1998 Jul;280(2):152–6. http://dx.doi.org/10.1001/jama.280.2.152.
- Benowitz NL, Pérez-Stable EJ, Herrera B, Jacob P 3rd. Slower metabolism and reduced intake of nicotine from cigarette smoking in Chinese-Americans. J Natl Cancer Inst. 2002 Jan;94(2):108–15. http://dx.doi.org/10.1093/jnci/94.2.108.
- Benowitz NL, Lessov-Schlaggar CN, Swan GE, Jacob P 3rd. Female sex and oral contraceptive use accelerate nicotine metabolism. Clin Pharmacol Ther. 2006 May;79(5):480–8. http://dx.doi.org/10.1016/ j.clpt.2006.01.008.
- Rebagliato M, Bolúmar F, Florey CV, Jarvis MJ, Pérez-Hoyos S, Hernández-Aguado I, et al. Variations in cotinine levels in smokers during and after pregnancy. Am J Obstet Gynecol. 1998 Mar;178(3):568–71. http://dx.doi.org/10.1016/ S0002-9378(98)70440-5.
- Selby P, Hackman R, Kapur B, Klein J, Koren G. Heavily smoking women who cannot quit in pregnancy: evidence of pharmacokinetic predisposition. Ther Drug Monit. 2001 Jun;23(3):189–91. http://dx.doi.org/ 10.1097/00007691-200106000-00001.
- Molander L, Hansson A, Lunell E. Pharmacokinetics of nicotine in healthy elderly people. Clin Pharmacol Ther. 2001 Jan;69(1):57–65. http://dx.doi.org/10.1067/mcp.2001.113181.
- Zacny JP, Stitzer ML. Cigarette brand-switching: effects on smoke exposure and smoking behavior. J Pharmacol Exp Ther.
 1988 Aug;246(2):619–27. http://dx.doi.org/10.1016/ S0022-3565(25)22128-0.
- Dawkins LE, Kimber CF, Doig M, Feyerabend C, Corcoran O. Selftitration by experienced e-cigarette users: blood nicotine delivery and subjective effects. Psychopharmacology (Berl).
 2016 Aug;233(15-16):2933-41. http://dx.doi.org/10.1007/ s00213-016-4338-2.
- Sofuoglu M, Herman AI, Nadim H, Jatlow P. Rapid nicotine clearance is associated with greater reward and heart rate increases from intravenous nicotine. Neuropsychopharmacology. 2012 May;37(6):1509–16. http://dx.doi.org/10.1038/npp.2011.336.
- Papke RL. Merging old and new perspectives on nicotinic acetylcholine receptors. Biochem Pharmacol. 2014 May;89(1):1–11. http://dx.doi.org/ 10.1016/j.bcp.2014.01.029.
- Wills L, Ables JL, Braunscheidel KM, Caligiuri SP, Elayouby KS, Fillinger C, et al. Neurobiological mechanisms of nicotine reward and aversion. Pharmacol Rev. 2022 Jan;74(1):271–310. http://dx.doi.org/ 10.1124/pharmrev.121.000299.
- Fowler CD, Turner JR, Imad Damaj M. Molecular mechanisms associated with nicotine pharmacology and dependence. Handb Exp Pharmacol. 2020;258:373–93. http://dx.doi.org/10.1007/164_2019_252.
- Hughes JR. Effects of abstinence from tobacco: valid symptoms and time course. Nicotine Tob Res. 2007 Mar;9(3):315–27. http://dx.doi.org/ 10.1080/14622200701188919.
- Kerr DC, Owen LD, Capaldi DM. The timing of smoking onset, prolonged abstinence and relapse in men: a prospective study from ages 18 to 32 years. Addiction. 2011 Nov;106(11):2031–8. http://dx.doi.org/10.1111/j.1360-0443.2011.03500.x.
- Jacob P 3rd, Benowitz NL, Copeland JR, Risner ME, Cone EJ. Disposition kinetics of nicotine and cotinine enantiomers in rabbits and beagle dogs. J Pharm Sci. 1988 May;77(5):396–400. http://dx.doi.org/10.1002/jps.2600770508.
- Nwosu CG, Godin CS, Houdi AA, Damani LA, Crooks PA. Enantioselective metabolism during continuous administration of S-(-)- and R-(+)nicotine isomers to guinea-pigs. J Pharm Pharmacol. 1988 Dec;40(12):862–9. http://dx.doi.org/10.1111/ j.2042-7158.1988.tb06289.x.
- Ikushima S, Muramatsu I, Sakakibara Y, Yokotani K, Fujiwara M. The effects of d-nicotine and l-isomer on nicotinic receptors. J Pharmacol

- Exp Ther. 1982 Aug;222(2):463–70. http://dx.doi.org/10.1016/S0022-3565(25)33223-4.
- Fotedar S, Fotedar V. Green tobacco sickness: a brief review. Indian J Occup Environ Med. 2017;21(3):101–4. http://dx.doi.org/10.4103/ ijoem.IJOEM_160_17.
- Henstra C, Dekkers BG, Olgers TJ, Ter Maaten JC, Touw DJ. Managing intoxications with nicotine-containing e-liquids. Expert Opin Drug Metab Toxicol. 2022 Feb;18(2):115–21. http://dx.doi.org/10.1080/ 17425255.2022.2058930.
- Maessen GC, Wijnhoven AM, Neijzen RL, Paulus MC, van Heel DA, Bomers BH, et al. Nicotine intoxication by e-cigarette liquids: a study of case reports and pathophysiology. Clin Toxicol (Phila).
 2020 Jan;58(1):1–8. http://dx.doi.org/10.1080/15563650.2019.1636994.
- Mayer B. How much nicotine kills a human? Tracing back the generally accepted lethal dose to dubious self-experiments in the nineteenth century. Arch Toxicol. 2014 Jan;88(1):5–7. http://dx.doi.org/10.1007/ s00204-013-1127-0.
- Alkam T, Nabeshima T. Molecular mechanisms for nicotine intoxication. Neurochem Int. 2019 May;125:117–26. http://dx.doi.org/10.1016/j.neuint.2019.02.006.
- Connolly GN, Richter P, Aleguas A Jr, Pechacek TF, Stanfill SB, Alpert HR. Unintentional child poisonings through ingestion of conventional and novel tobacco products. Pediatrics. 2010 May;125(5):896–9. http://dx.doi.org/10.1542/peds.2009-2835.
- Obertova N, Navratil T, Zak I, Zakharov S. Acute exposures to e-cigarettes and heat-not-burn products reported to the Czech Toxicological Information Centre over a 7-year period (2012-2018). Basic Clin Pharmacol Toxicol. 2020 Jul;127(1):39–46. http://dx.doi.org/10.1111/bcpt.13393.
- Franchitto N, Bloch J, Solal C, Pélissier F; French PCC Research Group. French PCCRG, Pelissier F. Self-poisoning by e-cigarette and eliquids: national reports to French poison control centers from July 2019 to December 2020: VIGIlance and VAPE: the VIGIVAPE Study. Nicotine Tob Res. 2024 Feb;26(3):281–8. http://dx.doi.org/10.1093/ntr/ ntad116.
- Ferris Wayne G, Connolly GN. Application, function, and effects of menthol in cigarettes: a survey of tobacco industry documents. Nicotine Tob Res. 2004 Feb;6 Suppl 1:S43–54. http://dx.doi.org/10.1080/ 14622203310001649513.
- Fagan P, Pokhrel P, Herzog TA, Pagano IS, Franke AA, Clanton MS, et al. Nicotine metabolism in young adult daily menthol and nonmenthol smokers. Nicotine Tob Res. 2016 Apr;18(4):437–46. http://dx.doi.org/ 10.1093/ntr/ntv109.
- Scientific Committee on Health. Opinion on additives used in tobacco products. Available from: https://health.ec.europa.eu/scientific-committees.en
- Anderson GD, Chan LN. Pharmacokinetic drug interactions with tobacco, cannabinoids and smoking cessation products. Clin Pharmacokinet. 2016 Nov;55(11):1353–68. http://dx.doi.org/10.1007/ s40262-016-0400-9.
- Zevin S, Benowitz NL. Drug interactions with tobacco smoking. An update. Clin Pharmacokinet. 1999 Jun;36(6):425–38. http://dx.doi.org/10.2165/00003088-199936060-00004.
- Piper ME, Smith SS, Schlam TR, Fiore MC, Jorenby DE, Fraser D, et al. A randomized placebo-controlled clinical trial of 5 smoking cessation pharmacotherapies. Arch Gen Psychiatry. 2009 Nov;66(11):1253–62. http://dx.doi.org/10.1001/archgenpsychiatry.2009.142.
- Henningfield JE, Keenan RM. Nicotine delivery kinetics and abuse liability. J Consult Clin Psychol. 1993 Oct;61(5):743–50. http://dx.doi.org/10.1037/0022-006X.61.5.743.
- Etter JF. Addiction to the nicotine gum in never smokers. BMC Public Health. 2007 Jul;7(1):159. http://dx.doi.org/10.1186/1471-2458-7-159.
- 101. Hajek P, Phillips-Waller A, Przulj D, Pesola F, Myers Smith K, Bisal N, et al. A randomized trial of e-cigarettes versus nicotine-replacement therapy. N Engl J Med. 2019 Feb;380(7):629–37. http://dx.doi.org/10.1056/NEJMoa1808779.
- Prochaska JJ, Benowitz NL. Current advances in research in treatment and recovery: nicotine addiction. Sci Adv. 2019 Oct;5(10):eaay9763. http://dx.doi.org/10.1126/sciadv.aay9763.
- Lasser K, Boyd JW, Woolhandler S, Himmelstein DU, McCormick D, Bor DH. Smoking and mental illness: A population-based prevalence study. JAMA. 2000 Nov;284(20):2606–10. http://dx.doi.org/10.1001/jama.284.20.2606.
- 104. Sagud M, Mihaljevic Peles A, Pivac N. Smoking in schizophrenia: recent findings about an old problem. Curr Opin Psychiatry. 2019 Sep;32(5):402–8. http://dx.doi.org/10.1097/ YCO.0000000000000529.
- Adler LE, Olincy A, Waldo M, Harris JG, Griffith J, Stevens K, et al. Schizophrenia, sensory gating, and nicotinic receptors. Schizophr

- Bull. 1998;24(2):189–202. http://dx.doi.org/10.1093/oxfordjournals.schbul.a033320.
- 106. Fluharty M, Taylor AE, Grabski M, Munafô MR. The association of cigarette smoking with depression and anxiety: a systematic review. Nicotine Tob Res. 2017 Jan;19(1):3–13. http://dx.doi.org/10.1093/ntr/ntw140.
- 107. Li X, Li W, Liu G, Shen X, Tang Y. Association between cigarette smoking and Parkinson's disease: A meta-analysis. Arch Gerontol Geriatr. 2015;61(3):510–6. http://dx.doi.org/10.1016/j.archger.2015.08.004.
- 108. Yang F, Pedersen NL, Ye W, Liu Z, Norberg M, Forsgren L, et al. Moist smokeless tobacco (Snus) use and risk of Parkinson's disease. Int J Epidemiol. 2017 Jun;46(3):872–80.
- 109. Ma C, Molsberry S, Li Y, Schwarzschild M, Ascherio A, Gao X. Dietary nicotine intake and risk of Parkinson disease: a prospective study. Am J Clin Nutr. 2020 Oct;112(4):1080–7. http://dx.doi.org/10.1093/ajcn/ nqaa186.
- 110. Tanner CM, Goldman SM, Aston DA, Ottman R, Ellenberg J, Mayeux R, et al. Smoking and Parkinson's disease in twins. Neurology. 2002 Feb;58(4):581–8. http://dx.doi.org/10.1212/WNL.58.4.581.
- 111. Villafane G, Thiriez C, Audureau E, Straczek C, Kerschen P, Cormier-Dequaire F, et al. High-dose transdermal nicotine in Parkinson's disease patients: a randomized, open-label, blinded-endpoint evaluation phase 2 study. Eur J Neurol. 2018 Jan;25(1):120–7. http://dx.doi.org/10.1111/ene.13474.
- Vieregge A, Sieberer M, Jacobs H, Hagenah JM, Vieregge P. Transdermal nicotine in PD: a randomized, double-blind, placebo-controlled study. Neurology. 2001 Sep;57(6):1032–5. http://dx.doi.org/10.1212/WNL.57.6.1032.
- 113. Clemens P, Baron JA, Coffey D, Reeves A. The short-term effect of nicotine chewing gum in patients with Parkinson's disease. Psychopharmacology (Berl). 1995 Jan;117(2):253–6. http://dx.doi.org/10.1007/ BF02245195.
- 114. Fratiglioni L, Wang HX. Smoking and Parkinson's and Alzheimer's disease: review of the epidemiological studies. Behav Brain Res. 2000 Aug;113(1-2):117–20. http://dx.doi.org/10.1016/S0166-4328(00)00206-0.
- 115. Cataldo JK, Prochaska JJ, Glantz SA. Cigarette smoking is a risk factor for Alzheimer's Disease: an analysis controlling for tobacco industry affiliation. J Alzheimers Dis. 2010;19(2):465–80. http://dx.doi.org/ 10.3233/JAD-2010-1240.
- 116. Shim SB, Lee SH, Chae KR, Kim CK, Hwang DY, Kim BG, et al. Nicotine leads to improvements in behavioral impairment and an increase in the nicotine acetylcholine receptor in transgenic mice. Neurochem Res. 2008 Sep;33(9):1783–8. http://dx.doi.org/10.1007/s11064-008-9629-5.
- 117. Srivareerat M, Tran TT, Salim S, Aleisa AM, Alkadhi KA. Chronic nicotine restores normal Aβ levels and prevents short-term memory and E-LTP impairment in Aβ rat model of Alzheimer's disease. Neurobiol Aging. 2011 May;32(5):834–44. http://dx.doi.org/10.1016/j.neurobiolaging.2009.04.015.
- 118. Howe MN, Price IR. Effects of transdermal nicotine on learning, memory, verbal fluency, concentration, and general health in a healthy sample at risk for dementia. Int Psychogeriatr. 2001 Dec;13(4):465–75. http://dx.doi.org/10.1017/S1041610201007888.
- White HK, Levin ED. Four-week nicotine skin patch treatment effects on cognitive performance in Alzheimer's disease. Psychopharmacology (Berl). 1999 Apr;143(2):158–65. http://dx.doi.org/10.1007/ s002130050931.
- 120. Mahid SS, Minor KS, Soto RE, Hornung CA, Galandiuk S. Smoking and inflammatory bowel disease: a meta-analysis. Mayo Clin Proc. 2006 Nov;81(11):1462–71. http://dx.doi.org/10.4065/81.11.1462.
- Tracey KJ. Reflex control of immunity. Nat Rev Immunol. 2009 Jun;9(6):418–28. http://dx.doi.org/10.1038/nri2566.
- 122. Mabley J, Gordon S, Pacher P. Nicotine exerts an anti-inflammatory effect in a murine model of acute lung injury. Inflammation. 2011 Aug;34(4):231–7. http://dx.doi.org/10.1007/s10753-010-9228-x.
- 123. Wang H, Liao H, Ochani M, Justiniani M, Lin X, Yang L, et al. Cholinergic agonists inhibit HMGB1 release and improve survival in experimental sepsis. Nat Med. 2004 Nov;10(11):1216–21. http://dx.doi.org/ 10.1038/nm1124.
- 124. Cheng Z, Li-Sha G, Jing-Lin Z, Wen-Wu Z, Xue-Si C, Xing-Xing C, et al. Protective role of the cholinergic anti-inflammatory pathway in a mouse model of viral myocarditis. PLoS One. 2014 Nov;9(11):e112719. http://dx.doi.org/10.1371/journal.pone.0112719.
- 125. Sadis C, Teske G, Stokman G, Kubjak C, Claessen N, Moore F, et al. Nicotine protects kidney from renal ischemia/reperfusion injury through the cholinergic anti-inflammatory pathway. PLoS One. 2007 May;2(5):e469. http://dx.doi.org/10.1371/journal.pone.0000469.
- 126. Shi FD, Piao WH, Kuo YP, Campagnolo DI, Vollmer TL, Lukas RJ. Nicotinic attenuation of central nervous system inflammation and au-

- toimmunity. J Immunol. 2009 Feb;182(3):1730–9. http://dx.doi.org/10.4049/jimmunol.182.3.1730.
- 127. Strzelak A, Ratajczak A, Adamiec A, Feleszko W. Tobacco smoke induces and alters immune responses in the lung triggering inflammation, allergy, asthma and other lung diseases: a mechanistic review. Int J Environ Res Public Health. 2018 May;15(5):1033. http://dx.doi.org/10.3390/ijerph15051033.
- Ligresti A, De Petrocellis L, Di Marzo V. From phytocannabinoids to cannabinoid receptors and endocannabinoids: pleiotropic physiological and pathological roles through complex pharmacology. Physiol Rev. 2016 Oct;96(4):1593–659. http://dx.doi.org/10.1152/physrev.00002.2016.
- 129. Dos Reis Rosa Franco G, Smid S, Viegas C. Phytocannabinoids: general aspects and pharmacological potential in neurodegenerative diseases. Curr Neuropharmacol. 2021;19(4):449–64. http://dx.doi.org/10.2174/1570159X18666200720172624.
- 130. Aizpurua-Olaizola O, Soydaner U, Öztürk E, Schibano D, Simsir Y, Navarro P, et al. Evolution of the cannabinoid and terpene content during the growth of cannabis sativa plants from different chemotypes. J Nat Prod. 2016 Feb;79(2):324–31. http://dx.doi.org/10.1021/acs.jnatprod.5b00949.
- Corroon J. Cannabinol and sleep: separating fact from fiction. Cannabis Cannabinoid Res. 2021 Oct;6(5):366–71. http://dx.doi.org/10.1089/ can.2021.0006.
- Foster BC, Abramovici H, Harris CS. Cannabis and cannabinoids: kinetics and interactions. Am J Med. 2019 Nov;132(11):1266–70. http://dx.doi.org/10.1016/j.amjmed.2019.05.017.
- 133. Reboussin BA, Wagoner KG, Sutfin EL, Suerken C, Ross JC, Egan KL, et al. Trends in marijuana edible consumption and perceptions of harm in a cohort of young adults. Drug Alcohol Depend. 2019 Dec;205:107660. http://dx.doi.org/10.1016/j.drugal-cdep.2019.107660.
- 134. Syed YY, McKeage K, Scott LJ. Delta-9-tetrahydrocannabinol/ cannabidiol (Sativex®): a review of its use in patients with moderate to severe spasticity due to multiple sclerosis. Drugs. 2014 Apr;74(5):563–78. http://dx.doi.org/10.1007/s40265-014-0197-5.
- 135. Sholler DJ, Schoene L, Spindle TR. Therapeutic efficacy of cannabidiol (CBD): a review of the evidence from clinical trials and human laboratory studies. Curr Addict Rep. 2020 Sep;7(3):405–12. http://dx.doi.org/ 10.1007/s40429-020-00326-8.
- Lucas CJ, Galettis P, Schneider J. The pharmacokinetics and the pharmacodynamics of cannabinoids. Br J Clin Pharmacol.
 Nov;84(11):2477–82. http://dx.doi.org/10.1111/bcp.13710.
- 137. Lunn S, Diaz P, O'Hearn S, Cahill SP, Blake A, Narine K, et al. Human pharmacokinetic parameters of orally administered Δ(9)-tetrahydro-cannabinol capsules are altered by fed versus fasted conditions and sex differences. Cannabis Cannabinoid Res. 2019 Dec;4(4):255–64. http://dx.doi.org/10.1089/can.2019.0037.
- Grotenhermen F. Pharmacokinetics and pharmacodynamics of cannabinoids. Clin Pharmacokinet. 2003;42(4):327–60. http://dx.doi.org/ 10.2165/00003088-200342040-00003.
- 139. Heuberger JA, Guan Z, Oyetayo OO, Klumpers L, Morrison PD, Beumer TL, et al. Population pharmacokinetic model of THC integrates oral, intravenous, and pulmonary dosing and characterizes short- and long-term pharmacokinetics. Clin Pharmacokinet. 2015 Feb;54(2):209–19. http://dx.doi.org/10.1007/s40262-014-0195-5.
- Sharma P, Murthy P, Bharath MM. Chemistry, metabolism, and toxicology of cannabis: clinical implications. Iran J Psychiatry. 2012;7(4):149–56.
- 141. Lowe RH, Abraham TT, Darwin WD, Herning R, Cadet JL, Huestis MA. Extended urinary Delta9-tetrahydrocannabinol excretion in chronic cannabis users precludes use as a biomarker of new drug exposure. Drug Alcohol Depend. 2009 Nov;105(1-2):24–32. http://dx.doi.org/10.1016/j.drugalcdep.2009.05.027.
- 142. McPherson C. Up in smoke: the impacts of marijuana during pregnancy. Neonatal Netw. 2023 Jul;42(4):222–32. http://dx.doi.org/10.1891/ NN-2022-0040.
- 143. Baker T, Datta P, Rewers-Felkins K, Thompson H, Kallem RR, Hale TW. Transfer of inhaled cannabis into human breast milk. Obstet Gynecol. 2018 May;131(5):783–8. http://dx.doi.org/10.1097/ AOG.0000000000002575.
- 144. Babayeva M, Loewy ZG. Cannabis pharmacogenomics: a path to personalized medicine. Curr Issues Mol Biol. 2023 Apr;45(4):3479–514. http://dx.doi.org/10.3390/cimb45040228.
- 145. Hess C, Schoeder CT, Pillaiyar T, Madea B, Müller CE. Pharmacological evaluation of synthetic cannabinoids identified as constituents of spice. Forensic Toxicol. 2016;34(2):329–43. http://dx.doi.org/10.1007/s11419-016-0320-2.

- Alipour A, Patel PB, Shabbir Z, Gabrielson S. Review of the many faces of synthetic cannabinoid toxicities. Ment Health Clin. 2019 Mar;9(2):93–9. http://dx.doi.org/10.9740/mhc.2019.03.093.
- 147. Peng J, Fan M, An C, Ni F, Huang W, Luo J. A narrative review of molecular mechanism and therapeutic effect of cannabidiol (CBD). Basic Clin Pharmacol Toxicol. 2022 Apr;130(4):439–56. http://dx.doi.org/10.1111/bcpt.13710.
- 148. Cohen K, Weinstein AM. Synthetic and non-synthetic cannabinoid drugs and their Adverse effects-a review from public health prospective. Front Public Health. 2018 Jun;6:162. http://dx.doi.org/10.3389/ fpubh.2018.00162.
- Schep LJ, Slaughter RJ, Glue P, Gee P. The clinical toxicology of cannabis. N Z Med J. 2020 Oct;133(1523):96–103.
- 150. Choi NG, Marti CN, DiNitto DM, Baker SD. Cannabis and synthetic cannabinoid poison control center cases among adults aged 50+, 2009-2019. Clin Toxicol (Phila). 2021 Apr;59(4):334–42. http://dx.doi.org/10.1080/15563650.2020.1806296.
- 151. Rock KL, Englund A, Morley S, Rice K, Copeland CS. Can cannabis kill? Characteristics of deaths following cannabis use in England (1998-2020). J Psychopharmacol. 2022 Dec;36(12):1362–70. http://dx.doi.org/10.1177/02698811221115760.
- Levinsohn EA, Hill KP. Clinical uses of cannabis and cannabinoids in the United States. J Neurol Sci. 2020 Apr;411:116717. http://dx.doi.org/ 10.1016/j.jns.2020.116717.
- 153. Benowitz NL. Managing cannabis use in patients with cardiovascular disease. Can J Cardiol. 2019 Feb;35(2):138–41. http://dx.doi.org/ 10.1016/j.cjca.2018.12.033.
- 154. McCartney D, Arkell TR, Irwin C, McGregor IS. Determining the magnitude and duration of acute Δ9-tetrahydrocannabinol (Δ9-THC)-induced driving and cognitive impairment: A systematic and meta-analytic review. Neurosci Biobehav Rev. 2021 Jul;126:175–93. http://dx.doi.org/10.1016/j.neubiorev.2021.01.003.
- American Psychiatric Association D-TF. Diagnostic and statistical manual of mental disorders: DSM-5. 5th ed. American Psychiatric Publishing, Inc.; 2013.
- Haney M, Evins AE. Does cannabis cause, exacerbate or ameliorate psychiatric disorders? An oversimplified debate discussed. Neuropsychopharmacology. 2016 Jan;41(2):393

 –401. http://dx.doi.org/10.1038/ npp.2015.251.
- DeVuono MV, Parker LA. Cannabinoid hyperemesis syndrome: a review of potential mechanisms. Cannabis Cannabinoid Res. 2020 Jun;5(2):132–44. http://dx.doi.org/10.1089/can.2019.0059.
- Badowski S, Smith G. Cannabis use during pregnancy and postpartum. Can Fam Physician. 2020 Feb;66(2):98–103.
- 159. Gobbi G, Atkin T, Zytynski T, Wang S, Askari S, Boruff J, et al. Association of cannabis use in adolescence and risk of depression, anxiety, and suicidality in young adulthood: a systematic review and meta-analysis. JAMA Psychiatry. 2019 Apr;76(4):426–34. http://dx.doi.org/10.1001/jamapsychiatry.2018.4500.
- 160. Volkow ND, Compton WM, Weiss SR. Adverse health effects of marijuana use. N Engl J Med. 2014 Aug;371(9):879.
- 161. Di Forti M, Sallis H, Allegri F, Trotta A, Ferraro L, Stilo SA, et al. Daily use, especially of high-potency cannabis, drives the earlier onset of psychosis in cannabis users. Schizophr Bull. 2014 Nov;40(6):1509–17. http://dx.doi.org/10.1093/schbul/sbt181.
- 162. Lopera V, Rodríguez A, Amariles P. Clinical relevance of drug interactions with cannabis: a systematic review. J Clin Med. 2022 Feb;11(5):1154. http://dx.doi.org/10.3390/jcm11051154.
- 163. Hsu A, Painter NA. Probable interaction between warfarin and inhaled and oral administration of cannabis. J Pharm Pract. 2020 Dec;33(6):915–8. http://dx.doi.org/10.1177/0897190019854958.
- 164. Damkier P, Lassen D, Christensen MM, Madsen KG, Hellfritzsch M, Pottegård A. Interaction between warfarin and cannabis. Basic Clin Pharmacol Toxicol. 2019 Jan;124(1):28–31. http://dx.doi.org/10.1111/ bcpt.13152.
- 165. Yamreudeewong W, Wong HK, Brausch LM, Pulley KR. Probable interaction between warfarin and marijuana smoking. Ann Pharmacother. 2009 Jul;43(7):1347–53. http://dx.doi.org/10.1345/aph.1M064.
- 166. Vierke C, Marxen B, Boettcher M, Hiemke C, Havemann-Reinecke U. Buprenorphine-cannabis interaction in patients undergoing opioid maintenance therapy. Eur Arch Psychiatry Clin Neurosci. 2021 Aug;271(5):847–56. http://dx.doi.org/10.1007/s00406-019-01091-0.
- 167. Stott C, White L, Wright S, Wilbraham D, Guy G. A Phase I, open-label, randomized, crossover study in three parallel groups to evaluate the effect of Rifampicin, Ketoconazole, and Omeprazole on the pharmacokinetics of THC/CBD oromucosal spray in healthy volunteers. Springerplus. 2013 May;2(1):236. http://dx.doi.org/10.1186/2193-1801-2-236.

- 168. Stockings E, Zagic D, Campbell G, Weier M, Hall WD, Nielsen S, et al. Evidence for cannabis and cannabinoids for epilepsy: a systematic review of controlled and observational evidence. J Neurol Neurosurg Psychiatry. 2018 Jul;89(7):741–53. http://dx.doi.org/10.1136/jnnp-2017-317168.
- 169. Silva GD, Del Guerra FB, de Oliveira Lelis M, Pinto LF. Cannabidiol in the treatment of epilepsy: a focused review of evidence and gaps. Front Neurol. 2020 Oct;11:531939. http://dx.doi.org/10.3389/ fneur.2020.531939.
- 170. Stockings E, Campbell G, Hall WD, Nielsen S, Zagic D, Rahman R, et al. Cannabis and cannabinoids for the treatment of people with chronic noncancer pain conditions: a systematic review and meta-analysis of controlled and observational studies. Pain. 2018 Oct;159(10):1932–54. http://dx.doi.org/10.1097/j.pain.000000000001293.
- 171. McDonagh MS, Morasco BJ, Wagner J, Ahmed AY, Fu R, Kansagara D, et al. Cannabis-based products for chronic pain: a systematic review. Ann Intern Med. 2022 Aug;175(8):1143–53. http://dx.doi.org/10.7326/M21-4520.
- 172. Leweke FM, Piomelli D, Pahlisch F, Muhl D, Gerth CW, Hoyer C, et al. Cannabidiol enhances anandamide signaling and alleviates psychotic symptoms of schizophrenia. Transl Psychiatry. 2012 Mar;2(3):e94. http://dx.doi.org/10.1038/tp.2012.15.
- 173. Mandolini GM, Lazzaretti M, Pigoni A, Oldani L, Delvecchio G, Brambilla P. Pharmacological properties of cannabidiol in the treatment of psychiatric disorders: a critical overview. Epidemiol Psychiatr Sci. 2018 Aug;27(4):327–35. http://dx.doi.org/10.1017/S2045796018000239.
- 174. Nichols DE. Psilocybin: from ancient magic to modern medicine. J Antibiot (Tokyo). 2020 Oct;73(10):679–86. http://dx.doi.org/10.1038/s41429-020-0311-8.
- 175. Van Court RC, Wiseman MS, Meyer KW, Ballhorn DJ, Amses KR, Slot JC, et al. Diversity, biology, and history of psilocybin-containing fungi: suggestions for research and technological development. Fungal Biol. 2022 Apr;126(4):308–19. http://dx.doi.org/10.1016/j.fun-bio.2022.01.003.
- 176. Hofmann A, Heim R, Brack A, Kobel H. [Psilocybin, a psychotropic substance from the Mexican mushroom Psilicybe mexicana Heim]. Experientia. 1958 Mar;14(3):107–9. http://dx.doi.org/10.1007/ BF02159243.
- 177. Matzopoulos R, Morlock R, Morlock A, Lerer B, Lerer L. Psychedelic mushrooms in the USA: knowledge, patterns of use, and association with health outcomes. Front Psychiatry. 2022 Jan;12:780696. http://dx.doi.org/10.3389/fpsyt.2021.780696.
- 178. Keyes KM, Patrick ME. Hallucinogen use among young adults ages 19-30 in the United States: changes from 2018 to 2021. Addiction. 2023 Dec;118(12):2449-54. http://dx.doi.org/10.1111/add.16259.
- Lowe H, Toyang N, Steele B, Valentine H, Grant J, Ali A, et al. The therapeutic potential of psilocybin. Molecules. 2021 May;26(10):2948. http://dx.doi.org/10.3390/molecules26102948.
- 180. van Amsterdam J, Opperhuizen A, van den Brink W. Harm potential of magic mushroom use: a review. Regul Toxicol Pharmacol. 2011 Apr;59(3):423–9. http://dx.doi.org/10.1016/j.yrtph.2011.01.006.
- MacCallum CA, Lo LA, Pistawka CA, Deol JK. Therapeutic use of psilocybin: practical considerations for dosing and administration. Front Psychiatry. 2022 Dec;13:1040217. http://dx.doi.org/10.3389/fpsvt.2022.1040217.
- 182. Kamata T, Nishikawa M, Katagi M, Tsuchihashi H. Liquid chromatography-mass spectrometric and liquid chromatography-tandem mass spectrometric determination of hallucinogenic indoles psilocin and psilocybin in "magic mushroom" samples. J. Forensic. J Forensic Sci. 2005;50(2):JFS2004276–5. http://dx.doi.org/10.1520/JFS2004276.
- Andersson C, Kristinsson J, Gry J. Occurrence and use of hallucinogenic mushrooms containing psilocybin alkaloids. Nordic Council of Ministers; 2009.ISBN: 978-92-893-1836-5. http://dx.doi.org/10.6027/ tn2008-606.
- 184. Beug MW, Bigwood J. Psilocybin and psilocin levels in twenty species from seven genera of wild mushrooms in the Pacific Northwest, U.S.A. J Ethnopharmacol. 1982 May;5(3):271–85. http://dx.doi.org/10.1016/ 0378-8741(82)90013-7.
- 185. Christiansen AL, Rasmussen KE, Høiland K. The content of Psilocybin in Norwegian Psilocybe semilanceata. Planta Med. 1981 Jul;42(7):229–35. http://dx.doi.org/10.1055/s-2007-971632.
- 186. Dinis-Oliveira RJ. Metabolism of psilocybin and psilocin: clinical and forensic toxicological relevance. Drug Metab Rev. 2017 Feb;49(1):84–91. http://dx.doi.org/10.1080/ 03602532.2016.1278228.
- 187. Hasler F, Bourquin D, Brenneisen R, Bär T, Vollenweider FX. Determination of psilocin and 4-hydroxyindole-3-acetic acid in plasma by HPLC-ECD and pharmacokinetic profiles of oral and intravenous psilo-

- cybin in man. Pharm Acta Helv. 1997 Jun;72(3):175–84. http://dx.doi.org/10.1016/S0031-6865(97)00014-9.
- 188. Kolaczynska KE, Liechti ME, Duthaler U. Development and validation of an LC-MS/MS method for the bioanalysis of psilocybin's main metabolites, psilocin and 4-hydroxyindole-3-acetic acid, in human plasma. J Chromatogr B Analyt Technol Biomed Life Sci. 2021 Feb;1164:122486. http://dx.doi.org/10.1016/ i.jchromb.2020.122486.
- 189. Horita A, Weber LJ. The enzymic dephosphorylation and oxidation of psilocybin and psilocin by mammalian tissue homogenates. Biochem Pharmacol. 1961 Jul;7(1):47–54. http://dx.doi.org/10.1016/ 0006-2952(61)90124-1.
- Holze F, Becker AM, Kolaczynska KE, Duthaler U, Liechti ME. Pharmacokinetics and pharmacodynamics of oral psilocybin administration in healthy participants. Clin Pharmacol Ther. 2023 Apr;113(4):822–31. http://dx.doi.org/10.1002/cpt.2821.
- Kalberer F, Kreis W, Rutschmann J. The fate of psilocin in the rat. Biochem Pharmacol. 1962;11(4-5):261–9. http://dx.doi.org/10.1016/ 0006-2952(62)90050-3.
- Rickli A, Moning OD, Hoener MC, Liechti ME. Receptor interaction profiles of novel psychoactive tryptamines compared with classic hallucinogens. Eur Neuropsychopharmacol. 2016 Aug;26(8):1327–37. http://dx.doi.org/10.1016/j.euroneuro.2016.05.001.
- 193. Manevski N, Kurkela M, Höglund C, Mauriala T, Court MH, Yli-Kauhaluoma J, et al. Glucuronidation of psilocin and 4-hydroxyindole by the human UDP-glucuronosyltransferases. Drug Metab Dispos. 2010 Mar;38(3):386–95. http://dx.doi.org/10.1124/dmd.109.031138.
- 194. Hasler F, Bourquin D, Brenneisen R, Vollenweider FX. Renal excretion profiles of psilocin following oral administration of psilocybin: a controlled study in man. J Pharm Biomed Anal. 2002 Sep;30(2):331–9. http://dx.doi.org/10.1016/S0731-7085(02)00278-9.
- Grieshaber AF, Moore KA, Levine B. The detection of psilocin in human urine. J Forensic Sci. 2001 May;46(3):627–30. http://dx.doi.org/10.1520/JFS15014J.
- 196. Thomann J, Kolaczynska KE, Stoeckmann OV, Rudin D, Vizeli P, Hoener MC, et al. *In vitro* and *in vivo* metabolism of psilocybin's active metabolite psilocin. Front Pharmacol. 2024 Apr;15:1391689. http://dx.doi.org/10.3389/fphar.2024.1391689.
- Passie T, Seifert J, Schneider U, Emrich HM. The pharmacology of psilocybin. Addict Biol. 2002 Oct;7(4):357–64. http://dx.doi.org/ 10.1080/1355621021000005937.
- 198. Brown RT, Nicholas CR, Cozzi NV, Gassman MC, Cooper KM, Muller D, et al. Pharmacokinetics of escalating doses of oral psilocybin in healthy adults. Clin Pharmacokinet. 2017 Dec;56(12):1543–54. http://dx.doi.org/10.1007/s40262-017-0540-6.
- 199. Holze F, Ley L, Müller F, Becker AM, Straumann I, Vizeli P, et al. Direct comparison of the acute effects of lysergic acid diethylamide and psilocybin in a double-blind placebo-controlled study in healthy subjects. Neuropsychopharmacology. 2022 May;47(6):1180–7. http://dx.doi.org/10.1038/s41386-022-01297-2.
- 200. Vollenweider FX, Vollenweider-Scherpenhuyzen MF, Bäbler A, Vogel H, Hell D. Psilocybin induces schizophrenia-like psychosis in humans via a serotonin-2 agonist action. Neuroreport. 1998 Dec;9(17):3897–902. http://dx.doi.org/10.1097/00001756-199812010-00024.
- 201. Nichols DE. Hallucinogens. Pharmacol Ther. 2004 Feb;101(2):131–81. http://dx.doi.org/10.1016/j.pharmthera.2003.11.002.
- 202. Hasler F, Grimberg U, Benz MA, Huber T, Vollenweider FX. Acute psychological and physiological effects of psilocybin in healthy humans: a double-blind, placebo-controlled dose-effect study. Psychopharmacology (Berl). 2004 Mar;172(2):145–56. http://dx.doi.org/10.1007/s00213-003-1640-6
- Liechti ME, Holze F. Dosing Psychedelics and MDMA. Curr Top Behav Neurosci. 2022;56:3–21. http://dx.doi.org/10.1007/7854_2021_270.
- 204. Ley L, Holze F, Arikci D, Becker AM, Straumann I, Klaiber A, et al. Comparative acute effects of mescaline, lysergic acid diethylamide, and psilocybin in a randomized, double-blind, placebo-controlled crossover study in healthy participants. Neuropsychopharmacology. 2023 Oct;48(11):1659–67. http://dx.doi.org/10.1038/ s41386-023-01607-2.
- Johnson M, Richards W, Griffiths R. Human hallucinogen research: guidelines for safety. J Psychopharmacol. 2008 Aug;22(6):603–20. http://dx.doi.org/10.1177/0269881108093587.
- 206. Straumann I, Holze F, Becker AM, Ley L, Halter N, Liechti ME. Safety pharmacology of acute psilocybin administration in healthy participants. Neurosci Appl. 2024;3:104060. http://dx.doi.org/10.1016/j.nsa.2024.104060.
- 207. Johnson MW, Griffiths RR, Hendricks PS, Henningfield JE. The abuse potential of medical psilocybin according to the 8 factors of the Con-

- trolled Substances Act. Neuropharmacology. 2018 Nov;142:143–66. http://dx.doi.org/10.1016/j.neuropharm.2018.05.012.
- 208. Cerletti A. Etude Pharmacologique de la Psilocybine. In: Heim R, Wasson RG, editors. Les champignons hallucinogenes du mexique. Paris: Museum de historie naturelle. 1958. p. 268-71. Available from: https://sciencepress.mnhn.fr/sites/default/files/articles/pdf/archives_du_museum_serie_7_tome_6__les_champignons_hallucinogenes_du_mexique_-_etudes_ethnologiques_taxinomiques_biologiques_physiologiques_et_chimiques_- med.pdf
- Kaminski D, Reinert JP. The tolerability and safety of psilocybin in psychiatric and substance-dependence conditions: a systematic review. Ann Pharmacother. 2024 Aug;58(8):811–26. http://dx.doi.org/10.1177/ 10600280231205645.
- 210. Becker AM, Holze F, Grandinetti T, Klaiber A, Toedtli VE, Kolaczynska KE, et al. Acute effects of psilocybin after escitalopram or placebo pretreatment in a randomized, double-blind, placebo-controlled, crossover study in healthy subjects. Clin Pharmacol Ther. 2022 Apr;111(4):886–95. http://dx.doi.org/10.1002/cpt.2487.
- Dahmane E, Hutson PR, Gobburu JV. Exposure-response analysis to assess the concentration-QTc relationship of psilocybin/psilocin. Clin Pharmacol Drug Dev. 2021 Jan;10(1):78–85. http://dx.doi.org/10.1002/cpdd.796.
- Rouaud A, Calder AE, Hasler G. Microdosing psychedelics and the risk of cardiac fibrosis and valvulopathy: comparison to known cardiotoxins. J Psychopharmacol. 2024 Mar;38(3):217–24. http://dx.doi.org/10.1177/ 02698811231225609.
- 213. Tagen M, Mantuani D, van Heerden L, Holstein A, Klumpers LE, Knowles R. The risk of chronic psychedelic and MDMA microdosing for valvular heart disease. J Psychopharmacol. 2023 Sep;37(9):876–90. http://dx.doi.org/10.1177/02698811231190865.
- 214. Barber G, Nemeroff CB, Siegel S. A case of prolonged mania, psychosis, and severe depression after psilocybin use: implications of increased psychedelic drug availability. Am J Psychiatry. 2022 Dec;179(12):892–6. http://dx.doi.org/10.1176/appi.ajp.22010073.
- Hermle L, Ruchsow M, Täschner KL. [Hallucinogen Persisting Perception Disorder (HPPD) and Flashback Phenomena Differential Diagnosis and Explanation Models]. Fortschr Neurol Psychiatr. 2015 Sep;83(9):506–15.
- Carter OL, Burr DC, Pettigrew JD, Wallis GM, Hasler F, Vollenweider FX. Using psilocybin to investigate the relationship between attention, working memory, and the serotonin 1A and 2A receptors. J Cogn Neurosci. 2005 Oct;17(10):1497–508. http://dx.doi.org/10.1162/089892905774597191.
- 217. Carter OL, Hasler F, Pettigrew JD, Wallis GM, Liu GB, Vollenweider FX. Psilocybin links binocular rivalry switch rate to attention and subjective arousal levels in humans. Psychopharmacology (Berl). 2007 Dec;195(3):415–24. http://dx.doi.org/10.1007/s00213-007-0930-9.
- Quednow BB, Kometer M, Geyer MA, Vollenweider FX. Psilocybin-induced deficits in automatic and controlled inhibition are attenuated by ketanserin in healthy human volunteers. Neuropsychopharmacology. 2012 Feb;37(3):630–40. http://dx.doi.org/10.1038/npp.2011.228.
- 219. Becker AM, Klaiber A, Holze F, Istampoulouoglou I, Duthaler U, Varghese N, et al. Ketanserin reverses the acute response to LSD in a randomized, double-blind, placebo-controlled, crossover study in healthy subjects. Int J Neuropsychopharmacol. 2023 Feb;26(2):97–106. http://dx.doi.org/10.1093/ijnp/pyac075.
- Van Went GF. Mutagenicity testing of 3 hallucinogens: LSD, psilocybin and delta 9-THC, using the micronucleus test. Experientia.
 1978 Mar;34(3):324–5. http://dx.doi.org/10.1007/BF01923013.
- Law FC, Poon G, Chui YC, He SX. 14C-Psilocin tissue distribution in pregnant rats after intravenous administration. Funct Food Health Dis. 2014;4(6):232–46. http://dx.doi.org/10.31989/ffhd.v4i6.9.
- 222. Nayak SM, Gukasyan N, Barrett FS, Erowid E, Erowid F, Griffiths RR. Classic psychedelic coadministration with lithium, but not lamotrigine, is associated with seizures: an analysis of online psychedelic experience reports. Pharmacopsychiatry. 2021 Sep;54(5):240–5. http://dx.doi.org/10.1055/a-1524-2794.
- 223. Sarparast A, Thomas K, Malcolm B, Stauffer CS. Drug-drug interactions between psychiatric medications and MDMA or psilocybin: a systematic review. Psychopharmacology (Berl). 2022 Jun;239(6):1945–76. http://dx.doi.org/10.1007/s00213-022-06083-y.
- 224. Halman A, Kong G, Sarris J, Perkins D. Drug-drug interactions involving classic psychedelics: A systematic review. J Psychopharmacol. 2024 Jan; 38(1):3–18. http://dx.doi.org/10.1177/02698811231211219.
- Strassman RJ. Human hallucinogen interactions with drugs affecting serotonergic neurotransmission. Neuropsychopharmacology. 1992 Nov;7(3):241–3.

- Bonson KR, Buckholtz JW, Murphy DL. Chronic administration of serotonergic antidepressants attenuates the subjective effects of LSD in humans. Neuropsychopharmacology. 1996 Jun;14(6):425–36. http://dx.doi.org/10.1016/0893-133X(95)00145-4.
- 227. Bonson KR, Murphy DL. Alterations in responses to LSD in humans associated with chronic administration of tricyclic antidepressants, monoamine oxidase inhibitors or lithium. Behav Brain Res. 1996;73(1-2):229–33. http://dx.doi.org/10.1016/0166-4328(96)00102-7.
- 228. Barbut Siva J, Barba T, Kettner H, Kuc J, Nutt DJ, Carhart-Harris R, et al. Interactions between classic psychedelics and serotonergic antidepressants: effects on the acute psychedelic subjective experience, well-being and depressive symptoms from a prospective survey study. J Psychopharmacol. 2024 Feb;38(2):145–55. http://dx.doi.org/10.1177/02698811231224217.
- 229. Gukasyan N, Griffiths RR, Yaden DB, Antoine DG 2nd, Nayak SM. Attenuation of psilocybin mushroom effects during and after SSRI/SNRI antidepressant use. J Psychopharmacol. 2023 Jul;37(7):707–16. http://dx.doi.org/10.1177/02698811231179910.
- Keeler MH. Chlorpromazine antogonism of psilocybin effect. Int J Neuropsychiatry. 1967;3(1):66–71.
- 231. Pokorny T, Preller KH, Kraehenmann R, Vollenweider FX. Modulatory effect of the 5-HT1A agonist buspirone and the mixed non-hallucinogenic 5-HT1A/2A agonist ergotamine on psilocybin-induced psychedelic experience. Eur Neuropsychopharmacol. 2016 Apr;26(4):756–66. http://dx.doi.org/10.1016/j.euroneuro.2016.01.005.
- 232. Carhart-Harris R, Giribaldi B, Watts R, Baker-Jones M, Murphy-Beiner A, Murphy R, et al. Trial of psilocybin versus escitalopram for depression. N Engl J Med. 2021 Apr;384(15):1402–11. http://dx.doi.org/10.1056/NEJMoa2032994.
- 233. Grob CS, Danforth AL, Chopra GS, Hagerty M, McKay CR, Halber-stadt AL, et al. Pilot study of psilocybin treatment for anxiety in patients with advanced-stage cancer. Arch Gen Psychiatry. 2011 Jan;68(1):71–8. http://dx.doi.org/10.1001/archgenpsychiatry.2010.116.
- 234. Griffiths RR, Johnson MW, Carducci MA, Umbricht A, Richards WA, Richards BD, et al. Psilocybin produces substantial and sustained de-

- creases in depression and anxiety in patients with life-threatening cancer: A randomized double-blind trial. J Psychopharmacol. 2016 Dec;30(12):1181–97. http://dx.doi.org/10.1177/0269881116675513.
- 235. Peck SK, Shao S, Gruen T, Yang K, Babakanian A, Trim J, et al. Psilocybin therapy for females with anorexia nervosa: a phase 1, open-label feasibility study. Nat Med. 2023 Aug;29(8):1947–53. http://dx.doi.org/10.1038/s41591-023-02455-9.
- Khan AJ, Bradley E, O'Donovan A, Woolley J. Psilocybin for traumarelated disorders. Curr Top Behav Neurosci. 2022;56:319–32. http://dx.doi.org/10.1007/7854_2022_366.
- 237. Bogenschutz MP, Ross S, Bhatt S, Baron T, Forcehimes AA, Laska E, et al. Percentage of heavy drinking days following psilocybin-assisted psychotherapy vs placebo in the treatment of adult patients with alcohol use disorder: a randomized clinical trial. JAMA Psychiatry. 2022 Oct;79(10):953–62. http://dx.doi.org/10.1001/jamapsychiatry.2022.2096.
- Johnson MW, Garcia-Romeu A, Cosimano MP, Griffiths RR. Pilot study of the 5-HT2AR agonist psilocybin in the treatment of tobacco addiction. J Psychopharmacol. 2014 Nov;28(11):983–92. http://dx.doi.org/ 10.1177/0269881114548296.
- Schindler EA, Sewell RA, Gottschalk CH, Luddy C, Flynn LT, Lindsey H, et al. Exploratory controlled study of the migraine-suppressing effects of psilocybin. Neurotherapeutics. 2021 Jan;18(1):534–43. http://dx.doi.org/10.1007/s13311-020-00962-y.
- 240. Schindler EA, Sewell RA, Gottschalk CH, Luddy C, Flynn LT, Zhu Y, et al. Exploratory investigation of a patient-informed low-dose psilocybin pulse regimen in the suppression of cluster headache: results from a randomized, double-blind, placebo-controlled trial. Headache. 2022 Nov;62(10):1383–94. http://dx.doi.org/10.1111/head.14420.
- Heal DJ, Smith SL, Belouin SJ, Henningfield JE. Psychedelics: threshold of a therapeutic revolution. Neuropharmacology.
 Sep;236:109610. http://dx.doi.org/10.1016/j.neuropharm.2023.109610.